2023届山东省烟台市烟台高三年级上册学期期末数学试题【含答案】.doc
21页2023届山东省烟台市烟台第一中学高三上学期期末数学试题一、单选题1.已知集合,则A. B.C. D.【答案】B【详解】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.2.已知为虚数单位,若为纯虚数,则实数的值为( )A. B. C. D.【答案】B【分析】根据复数除法的运算法则,结合纯虚数的定义进行求解即可.【详解】,因为为纯虚数,所以有,故选:B3.若平面向量与的夹角为,,,则等于( ).A. B. C.4 D.12【答案】B【分析】先求向量的数量积,然后利用向量的模的求解方法求解即可.【详解】因为平面向量与的夹角为,,,所以,,所以.故选:B.4.为促进中学生综合素质全面发展,某校开设5个社团,甲、乙、丙三名同学每人只报名参加1个社团,则不同的报名方式共有( )A.60种 B.120种 C.125种 D.243种【答案】C【分析】采用分步乘法计数原理进行计算。
详解】由题意知,甲、乙、丙三名同学每人只报名参加1个社团,所以每个人有5种选择.则不同的报名方式共有(种),故选:C.5.函数的图像为 ( )A. B. C. D.【答案】A【分析】略【详解】先根据函数为奇函数,舍去B,C再根据x等于1时,函数值大于零,舍去D故选:A6.已知表示,,中的最大值,例如,若函数,则的最小值为( )A.2.5 B.3 C.4 D.5【答案】B【分析】在同一平面直角坐标系中作出函数,,的图象,根据函数的新定义可得的图象,由图象即可得最小值.【详解】如图:在同一平面直角坐标系中作出函数,,的图象,因为,所以的图象如图实线所示:由可得,由可得,由图知在上单调递减,在上单调递增,在上单调递减,在上单调递增,所以当时,,当时,,所以的最小值为,故选:B.7.设函数,,b均为正整数,若的极小值点为2,则的极大值点为( )A.1 B.3 C.1或3 D.不确定【答案】B【分析】求导函数,令,由极值点的定义得,方程必有一根为2,且2是的极小值点, 由二次函数的性质建立不等式可得答案.【详解】解:求导得,令,得,则方程必有一根为2.代入,有,解得,则.因为2是的极小值点,又,所以为方程的较小根,从而,故.又a为正整数,故a=1.所以的极大值点为,故选:B.二、多选题8.已知函数,关于的最值有如下结论,其中正确的是( )A.在区间上的最小值为1B.在区间上既有最小值,又有最大值C.在区间上的最小值为2,最大值为5D.在区间上的最大值为【答案】BC【分析】的图象开口向上,对称轴为直线,根据二次函数的性质逐项判断即可.【详解】函数的图象开口向上,对称轴为直线.在选项A中,因为在区间上单调递减,所以在区间上的最小值为,A错误.在选项B中,因为在区间上单调递减,在上单调递增,所以在区间上的最小值为.又因为,所以在区间上的最大值为,B正确.在选项C中,因为在区间上单调递增,所以在区间上的最小值为,最大值为,C正确.在选项D中,当时,在区间上的最大值为2,当时,由图象知在区间上的最大值为,D错误.故选:BC.9.下列四个等式其中正确的是( )A. B.C. D.【答案】AD【分析】根据利用两角和与差的正切、正弦、二倍角公式进行三角恒等变换一一计算可得答案.【详解】A选项, 所以正确;B选项,,,所以错误;C选项, ,所以错误;D选项,所以正确.故选:AD.【点睛】本题考查三角恒等变换,两角和与差的正弦正切公式、二倍角公式等,公式要熟练记忆是解本题的关键.10.攒尖是我国古代建筑中屋顶的一种结构形式,宋代称为最尖,清代称攒尖,通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑,园林建筑.下面以四角攒尖为例,如图,它的屋顶部分的轮廓可近似看作一个正四棱锥.已知此正四棱锥的侧棱与底面所成角的正切值近似为,侧棱长近似为米,则下列结论正确的是( )A.正四棱锥的底面边长近似为3米B.正四棱锥的高近似为米C.正四棱锥的侧面积近似为平方米D.正四棱锥的体积近似为立方米【答案】BD【分析】利用已知条件画出图像,设O为正方形的中心,设底面边长为,利用线面角的定义得到求得 a,根据已知条件得到各边的长,进而求出正四棱锥的侧面积、体积即可.【详解】如图,在正四棱锥中,为正方形的中心,则平面,则为侧棱与底面所成角,且.设底面边长为.所以,.在中,,所以,正四棱锥的底面边长为6米,高为,侧面积平方米,体积,故选:BD.11.已知直线,圆,则以下命题正确的是( )A.直线均与圆E不一定相交B.直线被圆E截得的弦长的最小值C.直线被圆E截得的弦长的最大值6D.若直线与圆E交于与圆E交于,则四边形面积最大值为14【答案】BCD【分析】求出直线过同一个定点,而点在圆E内部,所以直线均与圆E相交可判断A;当时,直线被圆E截得的弦长最小,求出最小值可判断B;当时,直线被圆E截得的弦长最大,求出最大值可判断C;设圆心E到直线的距离分别为,由结合均值不等式可判断D.【详解】解析:由题意,直线,即.令,得,即直线过定点;直线,即,令,得,即直线过定点,所以直线过同一个定点,记为点M.圆可化为,而点在圆E内部,所以直线均与圆E相交,所以A选项错误;对于直线,当时,直线被圆E截得的弦长最小,且最小值为,所以B选项正确;对于直线,当时,直线被圆E截得的弦长最大,且最大值恰好为圆E的直径6,所以C选项正确;又当时,直线的斜率为a,直线的斜率为,即直线.设圆心E到直线的距离分别为,则,又,即,所以,所以,当且仅当时,等号成立,故四边形面积最大值为14,所以D选项正确,故选:BCD.三、填空题12.若函数f(x)=x2-2x+1在区间[a,a+2]上的最大值为4,则a的值为____________.【答案】-1或1【解析】对a分类讨论,利用函数f(x)=x2-2x+1在区间[a,a+2]上的最大值为4,建立方程,即可求得a的值.【详解】解:由题意,当时,,即,;当时,,即,;综上知,的值为1或−1.故答案为:1或−1.【点睛】本题考查二次函数在闭区间上的最值,考查分类讨论的数学思想,考查学生的计算能力,属于中档题.13.若,则的最小值为____________.【答案】【分析】两次利用基本不等式即可求出.【详解】,,当且仅当且,即时等号成立,所以的最小值为.故答案为:.14.现有5种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法种数为 ______.【答案】180【分析】根据题设,先从A区块着色,判断各部分的着色方案数,即可求不同的着色方法种数.【详解】按A、B、C、D顺序着色,A区块有5种着色方案,B区块有4种着色方案,C区块有3种着色方案,D区块有3种着色方案,故不同的着色方法种数为5×4×3×3=180,故答案为:180.15.已知双曲线的左焦点为F,过F且斜率为的直线交双曲线于点,交双曲线的渐近线于点且.若,则双曲线的离心率是_________.【答案】【分析】联立直线和渐近线方程,可求出点,再根据可求得点,最后根据点在双曲线上,即可解出离心率.【详解】过且斜率为的直线,渐近线,联立,得,由,得而点在双曲线上,于是,解得:,所以离心率.故答案为:.四、解答题16.在①,②,③,.这三个条件中任进一个,补充在下面问题中并作答.已知中,内角所对的边分别为,且________.(1)求的值;(2)若,求的周长与面积.【答案】(1)(2)周长为11,面积为【分析】(1)若选①,利用正弦定理边化角及诱导公式求出,再求出,由正切的二倍角公式即可求出的值;若选②,由诱导公式化简,再结合三角函数的平方和,可求出,,再由正切的二倍角公式可求出的值;若选③,由余弦的二倍角公式代入化简求出,再求出,由正切的二倍角公式可求出的值;(2)由,求出,由正弦定理求出,最后根据三角形的面积公式和周长即可得出答案.【详解】(1)若选①:由正弦定理得,故,而在中,,故,又,所以,则,则,故.若选②:由,化简得,代入中,整理得,即,因为,所以,所以,则,故.若选③:因为,所以,即,则.因为,所以,则,故.(2)因为,且,所以.由(1)得,则,由正弦定理得,则.故的周长为,的面积为.17.记为数列的前n项和.已知.(1)证明:是等差数列;(2)若成等比数列,求的最小值.【答案】(1)证明见解析;(2).【分析】(1)依题意可得,根据,作差即可得到,从而得证;(2)法一:由(1)及等比中项的性质求出,即可得到的通项公式与前项和,再根据二次函数的性质计算可得.【详解】(1)因为,即①,当时,②,①②得,,即,即,所以,且,所以是以为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得,,,又,,成等比数列,所以,即,解得,所以,所以,所以,当或时,.[方法二]:【最优解】邻项变号法由(1)可得,,,又,,成等比数列,所以,即,解得,所以,即有.则当或时,.【整体点评】(2)法一:根据二次函数的性质求出的最小值,适用于可以求出的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.18.如图,在三棱台中,底面是边长为2的正三角形,侧面为等腰梯形,且,为的中点.(1)证明:;(2)记二面角的大小为,时,求直线与平面所成角的正弦值的取值范围.【答案】(1)证明见解析;(2).【分析】(1)通过证明,得出平面,即可由线面垂直的性质得出;(2)以为坐标原点建立空间直角坐标系,可得为二面角的平面角,,求出平面的法向量和,利用向量关系可表示出直线与平面所成角的正弦值,即可根据范围求出.【详解】(1)证明:如图,作的中点,连接,,在等腰梯形中,,为,的中点,∴,在正中,为的中点,∴,∵,,,,平面,∴平面,又平面,∴.(2)解:∵平面,在平面内作,以为坐标原点,以,,,分别为,,,轴正向,如图建立空间直角坐标系,∵,,∴为二面角的平面角,即,,,,,,,设平面的法向量为,,,则有,即,则可取,又,设直线与平面所成角为,∴,∵,∴,∴.19.由中央电视台综合频道(CCTV-1)和唯众传媒联合制作的《开讲啦》是中国首档青年电视公开课.每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到了青年观众的喜爱.为了了解观众对节目的喜爱程度,电视台随机调查了A,B两个地区的100名观众,得到如下所示的2×2列联表.。




