
2024年江苏省宜兴市周铁区九上数学开学经典模拟试题【含答案】.doc
28页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………2024年江苏省宜兴市周铁区九上数学开学经典模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列计算正确的是( )A. B. C. D.2、(4分)下列函数中,y随x增大而减小的是( )A.y=x-1 B.y=-2x+3 C.y=2x-1 D.y=3、(4分)对四边形ABCD添加以下条件,使之成为平行四边形,正面的添加不正确的是( )A.AB∥CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD=BC D.AC与BD互相平分4、(4分)在中,,,,则的长为( )A.3 B.2 C. D.45、(4分)如图:菱形ABCD的对角线AC,BD相交于点O,AC= ,BD=,动点P段BD上从点B向点D运动,PF⊥AB于点F,PG⊥BC于点G,四边形QEDH与四边形PFBG关于点O中心对称,设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,,若S1=S2,则的值是( )A. B.或 C. D.不存在6、(4分)如图,已知△ ABC中,AB=AC,∠ BAC=90°,直角∠ EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△ EPF是等腰直角三角形; ③2S四边形AEPF=S△ ABC; ④BE+CF=EF.当∠ EPF在△ ABC内绕顶点P旋转时(点E与A、B重合).上述结论中始终正确的有( )A.1个 B.2个 C.3个 D.4个7、(4分)如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是( )A. B. C.2 D.8、(4分)如图,折叠菱形纸片ABCD,使得A′D′对应边过点C,若∠B=60°,AB=2,当A′E⊥AB时,AE的长是( )A.2 B.2 C. D.1+二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=_______.10、(4分)已知反比例函数,当时,y的取值范围是________.11、(4分)若代数式在实数范围内有意义,则x的取值范围是_____.12、(4分)有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔6.5米种一棵树(两端各种一棵树),则从上到下共种____棵树.13、(4分)某厂去年1月份的产值为144万元,3月份下降到100万元,求这两个月平均每月产值降低的百分率.如果设平均每月产值降低的百分率是x,那么列出的方程是___.三、解答题(本大题共5个小题,共48分)14、(12分)关于x的一元二次方程有实数根.(1)求k的取值范围;(2)若k是该方程的一个根,求的值.15、(8分)在研究反比例函数y=﹣的图象时,我们发现有如下性质:(1)y=﹣的图象是中心对称图形,对称中心是原点.(2)y=﹣的图象是轴对称图形,对称轴是直线y=x,y=﹣x.(3)在x<0与x>0两个范围内,y随x增大而增大;类似地,我们研究形如:y=﹣+3的函数:(1)函数y=﹣+3图象是由反比例函数y=﹣图象向____平移______个单位,再向_______平移______个单位得到的.(2)y=﹣+3的图象是中心对称图形,对称中心是______.(3)该函数图象是轴对称图形吗?如果是,请求出它的对称轴,如果不是,请说明理由.(4)对于函数y=,x在哪些范围内,y随x的增大而增大?16、(8分)村有肥料200吨,村有肥料300吨,现要将这些肥料全部运往、两仓库.从村往、两仓库运肥料的费用分别为每吨20元和25元;从村往、两仓库运肥料的费用分别为每吨15元和18元;现仓库需要肥料240吨,现仓库需要肥料260吨.(1)设村运往仓库吨肥料,村运肥料需要的费用为元;村运肥料需要的费用为元.①写出、与的函数关系式,并求出的取值范围;②试讨论、两村中,哪个村的运费较少?(2)考虑到村的经济承受能力,村的运输费用不得超过4830元,设两村的总运费为元,怎样调运可使总运费最少?17、(10分)为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,我国启动了“全国亿万学生阳光体育运动”短跑运动可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.(1)请根据图中信息,补齐下面的表格;(2)从图中看,小明与小亮哪次的成绩最好?(3)分别计算他们的平均数和方差,若你是他们的教练,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?18、(10分)如图,在Rt△ABC中,∠C=90°,以点B为圆心,以适当的长为半径画弧,与∠ABC的两边相交于点E、F,分别以点E和点F为圆心,以大于EF的长为半径画弧,两弧相交于点M,作射线BM交AC于点D;若∠ABC=2∠A,证明:AD=2CD.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在平面直角坐标系中,点,射线轴,直线交线段于点,交轴于点,是射线上一点.若存在点,使得恰为等腰直角三角形,则的值为_______.20、(4分)某公司测试自动驾驶技术,发现移动中汽车“”通信中每个数据包传输的测量精度大约为0.0000018秒,请将数据0.0000018用科学计数法表示为__________.21、(4分)因式分解:3x3﹣12x=_____.22、(4分)解分式方程时,设,则原方程化为关于的整式方程是__________.23、(4分)若,则的值是________.二、解答题(本大题共3个小题,共30分)24、(8分)现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元,设小明快递物品x千克.(1)根据题意,填写下表:快递物品重量(千克)0.5134…甲公司收费(元)22…乙公司收费(元)115167… (2)设甲快递公司收费y1元,乙快递公司收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x>3时,小明应选择哪家快递公司更省钱?请说明理由.25、(10分)问题提出:(1)如图1,在中,,点D和点A在直线的同侧,,,,连接,将绕点A逆时针旋转得到,连接(如图2),可求出的度数为______.问题探究:(2)如图3,在(1)的条件下,若,,且, ,①求的度数.②过点A作直线,交直线于点E,.请求出线段的长. 26、(12分)已知:如图,梯形ABCD中,AD∥BC,∠B=60°,∠C=30°,AD=4,BC=10.求:梯形两腰AB、CD的长.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】根据二次根式的加法法则判断A、B;根据二次根式的乘法法则判断C;根据二次根式的除法法则判断D.【详解】A、不是同类二次根式,不能合并,故本选项错误;B、不能合并,故本选项错误;C、故本选项正确;D、故本选项错误;故选:C.本题考查了二次根式的运算,掌握运算法则是解题的关键.2、B【解析】∵函数(y=kx+b)中y随x增大而减小,∴k<0,∵只有B选项k=-2<0,其它选项都大于0,∴B选项是正确.故选B.3、A【解析】根据平行四边形的判定方法依次判定各项后即可解答.【详解】选项A,AB∥CD,AD=BC,一组对边平行,另一组对边相等的四边形不一定是平行四边形,选项A不能够判定四边形ABCD是平行四边形;选项B,AB=CD,AB∥CD,一组对边平行且相等的四边形是平行四边形,选项B能够判定四边形ABCD是平行四边形;选项C,AB=CD,AD=BC,两组对边分别相等的四边形是平行四边形,选项C能够判定四边形ABCD是平行四边形; 选项D,AC与BD互相平分,对角线互相平分的四边形是平行四边形,选项D能够判定四边形ABCD是平行四边形.故选A.本题考查了平行四边形的判定方法,熟练运用判定方法是解决问题的关键.4、D【解析】根据,可得,再把AB的长代入可以计算出CB的长.【详解】解:∵cosB=,∴BC=AB•cosB=6×=1.故选:D.此题主要考查了锐角三角函数的定义,关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦.5、A【解析】根据对称性确定E、F、G、H都在菱形的边上,由于点P在BO上与点P在OD上求S1和S1的方法不同,因此需分情况讨论,由S1=S1和S1+S1=8可以求出S1=S1=2.然后在两种情况下分别建立关于x的方程,解方程,结合不同情况下x的范围确定x的值.【详解】①当点P在BO上,0<x≤1时,如图1所示.∵四边形ABCD是菱形,AC=2,BD=2,∴AC⊥BD,BO=BD=1,AO=AC=1,且S菱形ABCD=BD•AC=8.∴tan∠ABO==.∴∠ABO=60°.在Rt△BFP中,∵∠BFP=90°,∠FBP=60°,BP=x,∴sin∠FBP=.∴FP=x.∴BF=.∵四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称,∴S△BFP=S△BGP=S△DEQ=S△DHQ.∴S1=2S△BFP=2××x•=x1.∴S1=8-x1.②当点P在OD上,1<x≤2时,如图1所示.∵AB=2,BF=,∴AF=AB-BF=2.在Rt△AFM中,∵∠AFM=90°,∠FAM=30°,AF=2-.∴tan∠FAM=.∴FM=(2-).∴S△AFM=AF•FM=(2-)•(2-)=(2-)1.∵四边形PFBG关于BD对称,四边形QEDH与四边形FPBG关于AC对称,∴S△AFM=S△AEM=S△CHN=S△CGN.∴S1=2S△AFM=2×(2-)1=(x-8)1.∴S1=8-S1=8-(x-8)1.综上所述:当0<x≤1时,S1=x1,S1=8-x1;当1<x≤2时,S1=8-(x-8)1,S1=(x-8)1.当点P在BO上时,0<x≤1.∵S1=S1,S1+S1=8,∴S1=2.∴S1=x1=2.解得:x1=1,x1=-1.∵1>1,-1<0,∴当点P在BO上时,S1=S1的情况不存在.当点P在OD上时,1<x≤2.∵S1=S1,S1+S1=8,∴S1=2.∴S1=(x-8)1=2.解得:x1=8+1,x1。
