
2024年浙江省嘉兴市秀洲片区数学九年级第一学期开学检测试题【含答案】.doc
19页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………2024年浙江省嘉兴市秀洲片区数学九年级第一学期开学检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴上,已知B(﹣3,0)、C(2,0),则点D的坐标为( )A.(4,5) B.(5,4) C.(5,3) D.(4,3)2、(4分)下列说法正确的是( )A.对角线互相垂直的四边形是菱形 B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形 D.对角线相等的菱形是正方形3、(4分)菱形具有平行四边形不一定具有的特征是( )A.对角线互相垂直 B.对角相等 C.对角线互相平分 D.对边相等4、(4分)如果多项式是一个完全平方式,那么的值为 A. B. C. D.5、(4分)如图,点A(m,5),B(n,2)是抛物线C1:上的两点,将抛物线C1向左平移,得到抛物线C2,点A,B的对应点分别为点A',B'.若曲线段AB扫过的面积为9(图中的阴影部分),则抛物线C2的解析式是( )A. B.C. D.6、(4分)要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( )A.调查九年级全体学生 B.调查七、八、九年级各30名学生C.调查全体女生 D.调查全体男生7、(4分)在ABCD中,∠A=40°,则∠C=( )A.40° B.50° C.130° D.140°8、(4分)如果,下列各式中不正确的是 A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,有Rt△ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为 .10、(4分)甲、乙两人进行跳高训练时,在相同条件下各跳5次的平均成绩相同.若=0.5,=0.4,则甲、乙两人的跳高成绩较为稳定的是______.11、(4分)已知关于的方程有解,则的值为____________.12、(4分)如图,在平行四边形ABCD中,∠BAD的平分线AE交边CD于E,▱ABCD的周长是16cm,EC=2cm,则BC=______.13、(4分)如图所示,一次函数的图象与x轴的交点为,则下列说法:①y的值随x的值的增大而增大;②b>0;③关于x的方程的解为.其中说法正确的有______只写序号三、解答题(本大题共5个小题,共48分)14、(12分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.15、(8分)观察下列等式:第1个等式:a1=-1,第2个等式:a2=,第3个等式:a3==2-,第4个等式:a4=-2,…按上述规律,回答以下问题:(1)请写出第n个等式:an=__________.(2)a1+a2+a3+…+an=_________.16、(8分)已知直线 经过点M(-2,1),求此直线与x 轴,y 轴的交点坐标.17、(10分)有一个等腰三角形的周长为。
1)写出底边关于腰长的函数关系式;(2)写出自变量的取值范围18、(10分)如图1,在ABC中,AB=AC,点D,E分别在边AB,AC上,且AD=AE,连接DE,现将ADE绕点A逆时针旋转一定角度(如图2),连接BD,CE.(1)求证:ABD≌ACE;(2)延长BD交CE于点F,若AD⊥BD,BD=6,CF=4,求线段DF的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)计算:的结果是________.20、(4分)面试时,某人的基本知识、表达能力、工作态度的成绩分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是_______.21、(4分)已知,则的值是_______.22、(4分)已知不等式组的解集如图所示(原点没标出,数轴长度为1,黑点和圆圈均在整数的位置),则a的值为______.23、(4分)己知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是_____.二、解答题(本大题共3个小题,共30分)24、(8分)某校为了了解学生在校吃午餐所需时间的情况,抽查了20名同学在校吃午餐所花的时间,获得如下数据(单位:min):10,12,15,10,16,18,19,18,20,38,22,25,20,18,18,20,15,16,21,16.(1)若将这些数据分为6组,请列出频数表,画出频数直方图;(2)根据频数直方图,你认为校方安排学生吃午餐时间多长为宜?请说明理由.25、(10分)小芳从家骑自行车去学校,所需时间()与骑车速度()之间的反比例函数关系如图.(1)小芳家与学校之间的距离是多少?(2)写出与的函数表达式;(3)若小芳点分从家出发,预计到校时间不超过点分,请你用函数的性质说明小芳的骑车速度至少为多少?26、(12分)在中, ,以点为旋转中心,把逆时针旋转,得到,连接,求的长.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】首先根据菱形的性质和点的坐标求出AD=AB=BC=5,再利用勾股定理求出OA的长度,进而得到点D的坐标.【详解】解:∵菱形ABCD的顶点A在y轴上,B(﹣3,0),C(2,0),∴AB=AD=BC,OB=3,OC=2,∴AB=AD=BC=OB+OC=5,∴AD=AB=CD=5,∴OA===4,∴点D的坐标为(5,4).故选:B.本题主要考查菱形的性质及勾股定理,掌握菱形的性质和勾股定理是解题的关键.2、D【解析】利用菱形的判定、平行四边形的判定、正方形的判定及矩形的性质逐一判断即可得答案.【详解】A.对角线互相垂直的平行四边形是菱形,故该选项错误,B.矩形的对角线一定相等,但不一定垂直,故该选项错误,C.一组对边平行且相等的四边形是平行四边形,故该选项错误,D.对角线相等的菱形是正方形,正确,故选D.此题主要考查了菱形的判定、正方形的判定、平行四边形的判定及矩形的性质等知识,对角线互相垂直的平行四边形是菱形以及四条边相等的四边形是菱形;一组对边平行且相等的四边形是平行四边形;对角线相等的菱形是正方形;熟练掌握相关判定方法及性质是解题关键.3、A【解析】根据平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分;菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等; ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角进行解答即可.【详解】菱形具有但平行四边形不一定具有的是对角线互相垂直,故选A.本题主要考查了菱形和平行四边形的性质,关键是熟练掌握二者的性质定理.4、D【解析】分析:完全平方差公式是指:,根据公式即可得出答案.详解:根据完全平方公式可得:-m=±6,则m=±6,故选D.点睛:本题主要考查的是完全平方公式,属于基础题型.明白完全平方公式的形式是解题的关键.5、C【解析】图中阴影部分的面积等于BB'的长度乘以BB'上的高,根据点A、B的坐标求得高为3,结合面积可求得BB'为3,即平移距离是3,然后根据平移规律解答.【详解】解:,∵曲线段AB扫过的面积为9,点A(m,5),B(n,2)∴3BB′=9,∴BB′=3,即将函数的图象沿x轴向左平移3个单位长度得到抛物线C2,∴抛物线C2的函数表达式是:,故选:C.此题主要考查了二次函数图象与几何变换等知识,根据已知得出线段BB′的长度是解题关键.6、B【解析】【分析】如果抽取的样本得当,就能很好地反映总体的情况,否则抽样调查的结果会偏离总体情况.要抽出具有代表性的调查样本.【详解】A.只调查九年级全体学生,没有代表性;B. 调查七、八、九年级各30名学生,属于分层抽样,有代表性;C. 只调查全体女生,没有代表性;D. 只调查全体男生,没有代表性.故选B.【点睛】本题考核知识点:抽样调查. 解题关键点:要了解全校学生的课外作业负担情况,抽取的样本一定要具有代表性.7、A【解析】因为平行四边形的对角相等,所以∠A=∠C =40°,故选A8、B【解析】根据不等式两边加上(或减去)同一个数,不等号方向不变对A进行判断;根据不等式两边乘以(或除以)同一个负数,不等号方向改变可对B、D进行判断.根据不等式两边乘以(或除以)同一个正数,不等号方向不变可对C进行判断.【详解】、,则,所以选项的结论正确;、,则,所以选项的结论错误;、,则,所以选项的结论正确;、,则,所以选项的结论正确.故选.本题考查了不等式的性质:不等式两边加上(或减去)同一个数,不等号方向不变;不等式两边乘以(或除以)同一个正数,不等号方向不变;不等式两边乘以(或除以)同一个负数,不等号方向改变.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】试题分析:根据勾股定理即可求得结果.由题意得,正方形M与正方形N的面积之和为考点:本题考查的是勾股定理点评:解答本题的关键是根据勾股定理得到最大正方形的面积等于正方形M、N的面积和.10、乙【解析】根据在平均成绩相同的情况下,方差越小,成绩越稳定即可得出结论.【详解】解:∵0.5>0.4∴S甲2>S乙2,则成绩较稳定的同学是乙.故答案为:乙.此题考查的是利用方差做决策,掌握方差越小,数据越稳定是解决此题的关键.11、1【解析】分式方程去分母转化为整式方程,把x=2代入整式方程计算即可求出a的值.【详解】去分母得:a﹣x=ax﹣3,把x=2代入得:a﹣2=2a﹣3,解得:a=1.故答案为:1.本题考查了分式方程的解,始终注意分母不为0这个条件.12、1【解析】由平行四边形的性质和已知条件证出∠BAE=∠DEA,证出AD=DE;求出AD+DC=8,得出BC=1.【详解】∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,AD=BC,∴∠BAE=∠DEA,∵平行四边形ABCD的周长是16,∴AD+DC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AD=DE,∵EC=2,∴AD=1,∴BC=1,故答案为:1.本题考查平行线的性质和角平分线的性质,解题的关键是掌握平行线的性质和角平分线的性质.13、.【解析】一次函数及其应用:用函数的观点看方程(组)或不等式.【详解】由图象得:①的值随的值的增大而增大;②;③关于的方程的解为.故答案为:①②③.本题。
