好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

刚体力学基础完全版.ppt

63页
  • 卖家[上传人]:宝路
  • 文档编号:49207699
  • 上传时间:2018-07-25
  • 文档格式:PPT
  • 文档大小:1.79MB
  • / 63 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第 3 章Dynamics of Rigid Body(6)刚体力学基础1本章的主要内容是研究刚体的转动,尤其是定轴转动核心内容:• 定轴转动的转动定理• 刚体的转动惯量•定轴转动的角动量定理 及其守恒• 定轴转动的功能原理这些内容同学们最不熟悉,请同学们先预习力矩的瞬时效应-力矩的时间积累效应-力矩的空间积累效应-质点平动的惯性质量对应-平动中力的瞬时效应-平动中力的时间积累效应-平动中力的空间积累效应2刚体——力学中物体的一种理想模型刚体:运动中形状和大小都保持不变的物体实际问题中,当物体的形变很小可忽略时,就将物体视为刚体a)刚体上各质点之间的距离保持不变b)刚体有确定的形状和大小c)刚体可看作是由许多质点(质元)组成的质点系无论所受外力多大,不论转动多快,刚体的形 状都始终保持不变刚体的特征:3§3-1 .1 刚体运动学一.刚体的平动和转动如果刚体在运动中,刚体内任何两点的连线在空间的指向始终保持平行,这样的运动就称为平动在平动时,刚体内各质点的运动状态完全相同,因此平动刚体可视为质点通常是用刚体质心的运动来 代表整个刚体的平动 4刚体的一般运动比较复杂但可以证明,刚体一般 运动可看作是平动和转动的结合。

      如果刚体内的各个质点都绕同一直线(转轴)作圆周 运动,这种运动便称为转动如果转轴是固定不动的, 就称为定轴转动刚体在作定轴转动时,由于各质点 到转轴的距离不同,所以各质点的线 速度、加速度一般是不同的 r但由于各质点的相对位置保持不变, 所以描述各质点运动的角量,如角位移、 角速度和角加速度都是一样的二.定轴转动的描述p185 r1 描述定轴转动刚体的运动的角量•角坐标:角位移:单位:rad•角速度方向:与转向成右手螺旋关系6•角加速度角加速度为角速度对时间 t 的一次导数,或为角坐标 对时间 t 的二次导数单位:弧度/秒2,rad/s2, s-2方向:角速度变化的方向7对于刚体转动而言,可用角位移、角速度、角加 速度来描写,但对于刚体上的某一点来讲是作曲线运 动的,可用位移、速度、加速度来描写那么描写平 动的线量与描写转动的角量之间有什么关系呢?2 2 线量与角量之间的关系线量与角量之间的关系刚体转过刚体上的一点位移•线位移和角位移的关系8• •速度与角速度之间的关系速度与角速度之间的关系• •加速度与角加速度之间的关系加速度与角加速度之间的关系将质点的加速度 可分解为切向加速度 和法向加速度.将式两边同除9由•若角加速度β =c(恒量),则有10一.刚体的角动量(质点系的角动量)￿刚体的角动量=刚体上各个质点的角动量之和。

      §3-1.1.2 刚体的定轴转动ZLmiirio 式中: I=Δmi ri2称为刚体对z轴的转动惯量Li=Δmiiri=Δmi ri2刚体对z轴的角动量就是Lz=(Δmi ri2)设刚体以角速度 绕固定轴z转动(见图),质量为 Δmi的质点对o点的角动量为 =I11问题:为何动量的概念对刚体 的转动已失去意义?P=0ZLmiirio刚体对z轴的角动量:Lz= I显然,刚体的角动量的方向 与角速度的方向相同,沿z轴 方向(见图),故也称为刚体对固 定轴z的角动量12质量m—物体平动惯性大小的量度转动惯量I—物体转动惯性大小的量度 动量: p=m角动量: L=I转动惯量的物理意义I=Δmi ri2称为刚体对z轴的转 动惯量ZLmiirio13证明:刚体质点系的一对内力的力矩之和为零ij质点系中的一对内力的力矩之和为零质点系内力的力矩之和为零14对各质点求和,并注意到二.刚体定轴转动定理按质点角动量定理式,有设有一质点系, 第i个质点的位矢为 ri , 外力为 Fi , 内力为 , mi:得15=M质点系所受的合外力矩=L质点系的总角动量于是得式的意义是:质点系所受的合外力矩等于质点系的总角 动量对时间的变化率。

      这个结论叫质点系角动量定理 显然它也适用于定轴转动刚体这样的质点系16上式称为物体定轴转动方程对定轴转动的刚体, I为常量, d /dt=β, 故式又可写 成 上式是一矢量式, 它沿通过定点的固定轴z方 向上的分量式为这就是刚体定轴转动定理,它是刚体定轴转动 的动力学方程 M=Iβ(Lz=I)17￿ 式子表明, 刚体所受的合外力矩等于刚体的转动 惯量与刚体角加速度的乘积恒与 方向相同.物理意义:1 受合外力矩作用,刚体转动状态将发生改变,产生角加速度当刚体的 一定时,182 当 一定时,是刚体转动惯性大小的量度注意:1 改变刚体转动状态,产生角加速度的原因是力矩,而不是力!I表征刚体保持其原有转动状态的能力I是刚体的固有属性,与刚体处于什么状态无关.192 为瞬间作用规律一旦 ,立刻 ,匀角速度转动3 和 ,均对同一转轴而言 4 代表作用于刚体的合外力矩,特别强调:系统所受合外力为零,一对力偶产生的力矩不为零。

      以上内容的学习要点:掌握刚体定轴转动 定律及用隔离体法求解(刚体+质点)系统问题 的方法20质量m—物体平动惯性大小的量度转动惯量I—物体转动惯性大小的量度 §3-1.2 转动惯量动量: p=m角动量: L=I一.转动惯量的物理意义21I=Δmi ri2 即:质点体系的转动惯量等于各质点的质量乘以它 到转轴距离的平方的总和￿￿ (2)质量连续分布刚体￿￿式中: r为刚体上的质元dm到转轴的距离 (1)质量离散分布质点体系二.转动惯量的计算22三.平行轴定理Io=Ic+Md2Ic  通过刚体质心的轴的转动惯量;M  刚体系统的总质量;d  两平行轴(o,c)间的距离IoIcdCMo23平行轴定理的证明24o通过o点且垂直于三角形平 面的轴的转动惯量为 IO= (1)正三角形的各顶点处有一质点m,用质量不计 的细杆连接,如图系统对通过质心C且垂直于三角形 平面的轴的转动惯量为3+ml2=2ml2 =ml2+(3m)r2=2ml2例题 质量离散分布刚体: I=Δmi ri2 ml2lll ·crmmm刚体的转动惯量不仅依赖于质量的大小,而且还依赖 于质量到转轴的空间分布。

      25(2)用质量不计的细杆连接的五个质点, 如图所 示转轴垂直于质点所在平面且通过o点, 转动惯量 为 IO=m.02=30ml2+2m(2l2)+3m(2l)2+4ml2+5m(2l2)om2m3m 4m5mllll26记住!(1)质量为m、长度为l的细直棒,可绕通过质心C 且垂直于棒的中心轴转动,求转动惯量 例题质量连续分布刚体: 若棒绕一端o转动,由平行轴 定理, 则转动惯量为 C dxdm xxo解 方法:将细棒分为若干微元dm=(m/l)dx ,然后 积分得o27R(3)均质圆盘(m,R)绕中心轴转 动时,可将圆盘划分为若干个半 径r、宽dr的圆环积分 :(2)均质细圆环(m, R)绕中心轴转动时,其转动 惯量为 dmrdr28解 由 M=Iβ, = o+βt有外力矩时, 例题 以20N.m的恒力矩作用在有固定轴的转轮上 ,在10s内该轮的转速均匀地由零增大到100rev/min 此时撤去该力矩,转轮经100s而停止试推算此转 轮对该轴的转动惯量撤去外力矩时, -Mr=Iβ2 , β2=- /t2 (2) 代入t1=10s , t2=100s , =(100×2)/60=10.5rad/s, 解式(1)、(2)得 I=17.3kg.m2 。

      20=J1, 1= /t1 (因o=0) 20-Mr=Iβ1, β1= /t1 (因o=0) (1)29解 对柱体,由转动定律M=Iβ有mg.R=Iβ这式子对吗?错!此时绳中张力Tmg正确的解法是用隔离体法例题 质量为M、半径为R的匀质柱体可绕通过其 中心轴线的光滑水平固定轴转动;柱体边缘绕有一 根不能伸长的细绳,绳子下端挂一质量为m的物体 ,如图所示求柱体的角加速度及绳中的张力mgTmMR对m: mg-T=ma 对柱: TR=Iβa=Rβ 解得 β=2mg/[(2m+M)R],T=Mmg/(2m+M)30m: mg-T2= maa=Rβ1=rβ2 , 2=2ah 求解联立方程,代入数据,可得 =2m/s, T1=48N, T2=58N m1: T1R= m1R2β1 m2: T2r-T1r = m2r2β2例题两匀质圆盘可绕水平光滑轴转动,质量 m1=24kg, m2=5kg一轻绳缠绕于盘m1上,另一端 通过盘m2后挂有m=10kg的物体求物体m由静止开 始下落h=0.5m时,物体m的速度及 绳中的张力。

      解 各物体受力情况如图所示T1T1m1Rβ1m2β2 rT2mgm31小结: 若一个系统的运动包含物体平动和刚体的转动处理办法:对平动的物体,分析受力,按照 列方程对转动的刚体,分析力矩,按照 列方程补加转动与平动的关联方程联立求解各方程32例题 一根质量为m、长为l的均匀细棒AB,可绕 一水平光滑轴o在竖直平面内转动,Ao= l/3今使棒 从水平位置由静止开始转动,求棒转过角 时的角加 速度和角速度 CmgABo解 细棒AB受的重力可集中在质心,故重力的力 矩为33完成积分得讨论: (1)当=0时, β=3g/2l, =0 ;(2)当=90°时, β =0,又因CmgABo34例题 匀质圆盘:质量m、半径R,以o的角速度 转动现将盘置于粗糙的水平桌面上,摩擦系数为 µ,求圆盘经多少时间、转几圈将停下来? 解 将圆盘分为无限多个半径为r、宽为dr的圆环, 用积分计算出摩擦力矩o水平桌面rdr35于是得由= o+β t = 0得又由2-o2=2β ,所以停下来前转过的圈数为o水平桌面rdr36§3-2 定轴转动的角动量守恒定律上式的物理意义是:合外力矩的冲量(冲量矩)等于 物体角动量的增量。

      定轴转动方程:若物体所受的合外力矩为零(即M=0)时,则I =常量 这表明:当合外力矩为零时,物体的角动量将保持 不变,这就是定轴转动的角动量守恒定律37当系统所受的合外力力矩为零时,系统的总角动量 的矢量和就保持不变 对比:系统角动量守恒是: 系统动量守恒是:在日常生活中,利用角动量守恒的例子也是很多的系统角动量守恒定律:时,时, 3839角动量守恒在现代技术中有着非常广泛的应用例 如直升飞机在未发动前总角动量为零,发动以后旋翼在 水平面内高速旋转必然引起机身的反向旋转为了避 免这种情况,人们在机尾上安装一个在竖直平面旋转的 尾翼,由此产生水平面内的推动力来阻碍机身的旋转运 动与此类似,鱼雷尾部采用左右两个沿相反方向转动 的螺旋浆来推动鱼雷前进,也是为了避免鱼雷前进中的 自旋安装在轮船、飞机、导弹或宇宙飞船上的回转 仪(也叫“陀螺”)的导航作用,也是角动量守恒应用的 最好例证 以上内容的学习要点:掌握角动量守恒的条件 及用角动量守恒定律求解问题的方法40解 (1)杆+子弹:竖直位置,外力(轴o处的力和 重力)均不产生力矩,故碰撞过程。

      点击阅读更多内容
      相关文档
      【课件】有理数的加法(第二课时)课件 2024—2025学年人教版数学七年级上册.pptx 【课件】有理数的减法(第二课时)课件 2024—2025学年人教版数学七年级上册.pptx 【统编版】高中语文必修上册第二单元《4心有一团火温暖众人心》优质课(29张PPT)课件.pptx 【统编版】高中语文必修上册第一单元 3铁凝《哦香雪》上课课件(27张PPT)课件.pptx 【统编版】高一语文必修上册4-1《喜看稻菽千重浪—袁隆平》优质课(29张PPT)课件.pptx 【统编版】高中语文必修上册第二单元《4喜看稻菽千重浪》公开课(33张PPT)课件.pptx 【统编版】高中语文必修上册第一单元 3铁凝《哦香雪》原创课件(35张PPT)课件.pptx 【统编版】高中语文必修上册第一单元 3铁凝《哦香雪》优秀课件(25张PPT)课件.pptx 【新教材】高中语文部编版必修上册第二单元《4心有一团火温暖众人心》优秀课件(46张PPT)课件.pptx 【统编版】高一语文必修上册第4课《喜看稻菽千重浪—袁隆平》精品课(28张PPT)课件.pptx 【统编版】高中语文必修上册第二单元《4心有一团火温暖众人心》优质课(21张PPT)课件.pptx 【统编版】高一语文必修上册第4课《喜看稻菽千重浪—袁隆平》公开课(28张PPT)课件.pptx 【系列】高一(46)班《最强大脑 解密记忆——学习方法类》主题班会(18张PPT)课件.pptx 【统编版】高中语文必修上册第一单元 3铁凝《哦香雪》精美课件(33张PPT)课件.pptx 【新教材】高中语文部编版必修上册第二单元《4心有一团火温暖众人心》公开课(30张PPT)课件.pptx A0002【统编版】2025年高一语文秋季开学第一课《“语”你相遇遇见美好》公开课 (31张PPT)课件.pptx 苏科版(2024)新教材九年级物理上册第十二章《第1节 机械能》精品课件.pptx 苏科版(2024)新教材九年级物理上册第十一章《第3节 功》精品课件.pptx 享受青春拒绝早恋+主题班会说课课件.pptx 人教版(2024)新教材九年级物理全一册第十五章《第3节 串联电路和并联电路》精品课件.pptx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.