好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

通过分子动力学模拟取得的Hansen溶解度参数作为预测硅氧烷表面活性剂吸附路径Hansen solubility parameters obtained via molecular dyna.docx

30页
  • 卖家[上传人]:亦***
  • 文档编号:276774802
  • 上传时间:2022-04-13
  • 文档格式:DOCX
  • 文档大小:1.05MB
  • / 30 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • Hansen solubility parameters obtained via molecular dynamicssimulations as a route to predict siloxane surfactant adsorption 通过分子动力学模拟取得的Hansen溶解度参数作为预测硅氧烷外表活性剂吸附路径D.P. Faasen et al. / Journal of Colloid and Interface Science 575 (2020) 326-336Highlights 重点Surfactant molecules adsorb on a silicon substrate which has a detrimental effect on ink-jet printing.Solubility parameter is computed using molecular dynamics simulations.The effect of the solvent and the surface properties on surfactant adsorption are investigated.Surfactant adsorption on solid surfaces can be predicted by the Hansen solubility parameters. 外表活性剂分子吸附在硅基质上,不利于喷墨打印。

      采用分子动力学模拟,计算 溶解度参数研究了溶剂和外表性质对 外表活性剂吸附的影响固体外表的外表活性剂吸 附可通过Hansen溶解度参数预Graphical abstract图示摘要Abstract 摘要Hypothesis: The Hansen Solubility Parameters (HSP) derived from Molecular Dynamics (MD) simulations can be used as a fast approach to predict surfactants adsorption on a solid surface.Experiments and simulations: We focused on the specific case of siloxane-based surfactants adsorption on silicon oxide surface (SiCh), encountered in inkjet printing processes. A simplified atomistic model of the SiCh surface was designed to enable the computation of its solubility parameter using MD, and to subsequently determine the interactions of the SiCh surface with the siloxane-based surfactant and the various solvents employed. Surfactant adsorption was characterized experimentally using contact angle goniometry, ellipsometry, XPS and AFM.假设:源自分子动力学(MD)模拟的Hansen溶解度参数(HSP)可用作固体外表活性 剂吸附的快速方法。

      3 =皿;+岑+旗(2)where 3d is the dispersive component, 8P is the polar component, and 5h represents the hydrogen-bonding component of the solubility parameter. The dispersive interactions are related to the noncovalent London forces resulting from the instantaneous fluctuations of electrons. The polar interactions originate from the permanent dipoles in the molecules. Molecules which have an asymmetrical distribution of charges among its atoms will have a high solubility parameter polar component. The hydrogen bonding component of the solubility parameter describes the highly directional attraction occurring between a specific hydrogen atom from one molecule and another acceptor atom from a second molecule. Based on this division of the solubility parameter, Hansen developed the Hansen Solubility Parameter (HSP) 3D space (see Fig. 3), in which every material is represented by a single point corresponding to the geometric sum of the Hansen solubility parameter components. Two liquids, A and B, having close positions in this 3D space are likely to have high interactions and should be miscible when mixed. Similarly, dissolution is favored when the solubility parameters of the solvent match those of the solute in the Hansen 3D space. The solubility parameter distance, Ra(A-B), between the positions of two substances in the 3D-HSP diagram was defined by Hansen [36] as:其中,8d为溶解度参数的弥散分量,8p为极性分量,6h为氢一键分量。

      弥散相互作用 与由电子瞬时波动引起的非共价London力相关极性相互作用源于分子中的永久偶极子 原子之间具有非对称电荷分布的分子溶解度参数极性分量大溶解度参数的氢键成分描述 一个分子的特定氢原子和第二个分子的另一个受体原子之间发生的高度定向吸引基于溶 解度参数的这种区分,开发了 Hansen溶解度参数(HSP) 3D空间(见图3),其中每种材 料都由对应于Hansen溶解度参数分量的几何总和单个点表示这一 3D空间中位置较近 的两种液体A和B可能高度相互作用,且应在混合时混溶溶剂的溶解度参数与Hansen 3D空间中溶质的溶解度参数相匹配时,同样有利于溶解Hansen [36]将3D-HSP图中 两种物质位置之间的溶解度参数距离Ra(A-B)定义为:凡(A-B) = \/4(3dA — 6d.B)2 + (3p< — <>p,B)2 + (加4 —(3)Here, the scaling factor "4" was suggested by Hansen based on empirical testing because it correctly represented the solubility data as an affinity sphere encompassing the good solvents [36]. This sphere contains the liquids which exhibit high miscibility (or solubility) with a particular solute. The center of the sphere represents the solute coordinates (i.e., the three solubility parameter components of the solute), and the radius of the sphere corresponds to the largest Radistance of the set of liquids miscible (or have high affinity) with the solute. In this work, Ra(A-B) will give information on the solvents-surfactant and solvents-silicon interactions, ie, Ra and Rss, will henceforth refer, respectively, to the distances between the solvents and the surfactant and between the solvent and the silicon substrate in the Hansen space.由于正确地将溶解度数据表示为包覆良好溶剂的亲合球体的溶解度数据,这里Hansen基于经验测试提出了比例因子“4”。

      这是球体包 括与特定溶质表现出高度混溶性(或溶解度) 的液体球的中心代表溶质坐标(即溶质的三 个溶解度参数分量),球半径对应与溶质混溶 (或具有高亲合性)液体组的最大Ra距离在这项工作中,Ra(A-B)提供溶剂-外表活性剂 和溶剂-硅相互作用的信息,即Ra和Rss,之 后分别指Hansen空间中溶剂和外表活性剂之 间以及溶剂和硅基质之间的距离Fig. 3. Schematic representation of the 3D Hansen solubility parameters space. Here Ra(A- Bl)> Ra(A-B2), indicating that material A has stronger interactions with material Bl than with B2.. 3D Hansen溶解度参数空间示意图这里Ra(A-Bl)> Ra(A-B2)说明材料A与 材料B1的相互作用强于与B2相互作用2.4. Molecular dynamics simulations 分子动力学模拟2.4.1. Hydroxilated silicon dioxide model羟基化二氧化硅模型Hydroxilated silicon dioxide is a solid material composed of a non-interacting bulk silicon layer and SiOH interface (i.e., the reactive siloxane surface), making the determination of 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.