
安徽省阜阳市颍州区2025届数学九年级第一学期开学达标测试试题【含答案】.doc
23页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………安徽省阜阳市颍州区2025届数学九年级第一学期开学达标测试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是A. B. C. D.2、(4分)已知点是平行四边形内一点(不含边界),设.若,则( )A. B.C. D.3、(4分)关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等.以上四个条件中可以判定四边形ABCD是平行四边形的有( )A.1个B.2个C.3个D.4个4、(4分)下列各数中,是不等式的解的是 A. B.0 C.1 D.35、(4分)已知2是关于x的方程x2﹣2ax+4=0的一个解,则a的值是( )A.1 B.2 C.3 D.46、(4分)下面调查中,适合采用普查的是( )A.调查全国中学生心理健康现状 B.调查你所在的班级同学的身高情况C.调查我市食品合格情况 D.调查九江市电视台《九江新闻》收视率7、(4分)2014年4月13日,某中学初三650名学生参加了中考体育测试,为了了解这些学生的体考成绩,现从中抽取了50名学生的体考成绩进行了分析,以下说法正确的是( )A.这50名学生是总体的一个样本B.每位学生的体考成绩是个体C.50名学生是样本容量D.650名学生是总体8、(4分)方程x2-2x-5=0的左边配成一个完全平方后,所得的方程是()A. B.C. D. 二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若直角三角形两边的长分别为a、b且满足+|b-4|=0,则第三边的长是 _________.10、(4分)如图,中, D是AB的中点,则CD=__________.11、(4分)=_____.12、(4分)如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=_____.13、(4分)如图,DE∥BC,,则=_______.三、解答题(本大题共5个小题,共48分)14、(12分)若关于的一元二次方程有实数根,.(1)求实数的取值范围;(2)设,求的最小值.15、(8分)甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的是两车距B城的路程S甲(千米)、S乙(千米)与行驶时间t(时)的函数图象的一部分.(1)分别求出S甲、S乙与t的函数关系式(不必写出t的取值范围);(2)求A、B两城之间的距离,及t为何值时两车相遇;(3)当两车相距300千米时,求t的值.16、(8分)小明家准备给边长为6m的正方形客厅用黑色和白色两种瓷砖铺设,如图所示:①黑色瓷砖区域Ⅰ:位于四个角的边长相同的小正方形及宽度相等的回字型边框(阴影部分),②白色瓷砖区域Ⅱ:四个全等的长方形及客厅中心的正方形(空白部分).设四个角上的小正方形的边长为x(m).(1)当x=0.8时,若客厅中心的正方形瓷砖铺设的面积为16m2,求回字型黑色边框的宽度;(2)若客厅中心的正方形边长为4m,白色瓷砖区域Ⅱ的总面积为26m2,求x的值.17、(10分)(问题情境)在综合实践课上,同学们以“图形的平移”为主题开展数学活动,如图①,先将一张长为4,宽为3的矩形纸片沿对角线剪开,拼成如图所示的四边形,,,则拼得的四边形的周长是_____.(操作发现)将图①中的沿着射线方向平移,连结、、、,如图②.当的平移距离是的长度时,求四边形的周长. (操作探究)将图②中的继续沿着射线方向平移,其它条件不变,当四边形是菱形时,将四边形沿对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.18、(10分)如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S1+S2=5,且AC+BC=6,求AB的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,矩形ABCD的对角线AC、BD相交于点O,∠AOB=120°,CE//BD,DE//AC,若AD=5,则四边形CODE的周长______.20、(4分)若,则a与b的大小关系为a_____b(填“>”、“<”或“=”)21、(4分)如图,平行四边形ABCD中,,,,则平行四边形ABCD的面积为______.22、(4分)若式子在实数范围内有意义,则应满足的条件是_____________.23、(4分)小明根据去年4﹣10月本班同学去电影院看电影的人数,绘制了如图所示的折线统计图,图中统计数据的中位数是______人.二、解答题(本大题共3个小题,共30分)24、(8分)阅读下列材料:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如:.当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如:.假分式可以化为整式与真分式和的形式,我们也称之为带分式,如:.解决问题:(1)下列分式中属于真分式的是( )A. B. C. D.(2)将假分式分别化为带分式;(3)若假分式的值为整数,请直接写出所有符合条件的整数x的值.25、(10分)如图,已知二次函数()的图象与轴交于两点(点在点的左侧),与轴交于点,且,,顶点为.(1)求二次函数的解析式;(2)点为线段上的一个动点,过点作轴的垂线,垂足为,若,四边形的面积为,求关于的函数解析式,并写出的取值范围;(3)探索:线段上是否存在点,使为直角三角形?如果存在,求出点的坐标;如果不存在,请说明理由.26、(12分)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E. F.(1)求证:△BCF≌△BA1D.(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,所以,.故选A.2、D【解析】依据平行四边形的性质以及三角形内角和定理,可得θ2-θ1=10°,θ4-θ3=30°,两式相加即可得到θ2+θ4-θ1-θ3=40°.【详解】解:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=60°,∴∠BAM=60°-θ1,∠DCM=60°-θ3,∴△ABM中,60°-θ1+θ2+110°=180°,即θ2-θ1=10°①,△DCM中,60°-θ3+θ4+90°=180°,即θ4-θ3=30°②,由②+①,可得(θ4-θ3)+(θ2-θ1)=40°,;故选:D.本题主要考查了平行四边形的性质以及三角形内角和定理等知识;熟练掌握平行四边形的对角相等是解题的关键.3、C【解析】根据平行四边形的判定定理可知①②③可以判定四边形ABCD是平行四边形.故选C.4、D【解析】判断各个选项是否满足不等式的解即可.【详解】满足不等式x>2的值只有3,故选:D.本题考查不等式解的求解,关键是明白解的取值范围.5、B【解析】把x=1代入方程x1-1ax+4=0,得到关于a的方程,解方程即可.【详解】∵x=1是方程x1-1ax+4=0的一个根,∴4-4a+4=0,解得a=1.故选B.本题考查了一元二次方程的解的概念,解题时注意:使方程两边成立的未知数的值叫方程的解.6、B【解析】普查的调查结果比较准确,适用于精确度要求高的、范围较小的调查,抽样调查的调查结果比较近似,适用于具有破坏性的、范围较广的调查,由此即可判断.【详解】解:A选项全国中学生人数众多,调查范围广,适合抽样调查,故A不符合题意;B选项所在班级同学人数不多,身高要精确,适合普查,故B符合题意;C选项我市的食品数量众多,调查范围广,适合抽样调查,故C不符合题意;D选项调查收视率范围太广,适合抽样调查,故D不符合题意.故选:B.本题考查了抽样调查和普查,掌握抽样调查和普查各自的特点是进行灵活选用的关键.7、B【解析】因为这50名学生的体考成绩是总体的一个样本,所以选项A错误;因为每位学生的体考成绩是个体,所以选项B正确;因为50是样本容量,样本容量是个数字,没有单位,所以选项C错误;因为这650名学生的体考成绩是总体,所以选项D错误.故选B.8、B【解析】把常数项-5移项后,应该在左右两边同时加上一次项系数-2的一半的平方.【详解】解:把方程x2-2x-5=0的常数项移到等号的右边,得到x2-2x=5,方程两边同时加上一次项系数一半的平方,得到x2-2x+(-1)2=5+(-1)2,配方得(x-1)2=1.故选:B.本题考查配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.二、填空题(本大题共5个小题,每小题4分,共20分)9、2或【解析】首先利用绝对值以及算术平方根的性质得出a,b的值,再利用分类讨论结合勾股定理求出第三边长.【详解】解:∵+|b-4|=0,∴b=4,a=1.当b=4,a=1时,第三边应为斜边,∴第三边为;当b=4,a=1时,则第三边可能是直角边,其长为 =2.故答案为:2或.本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.10、6.1【解析】首先根据勾股定理求得AB=13,然后由“斜边上的中线等于斜边的一半”来求CD的长度.【详解】∵Rt△ABC中,,∴AB===13,∵D为AB的中点,∴CD=AB=6.1.故答案为:6.1.本题考查了勾股定理和直角三角形斜边上的中线.在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.11、1【解析】利用二次根式乘除法法则进行计算即可.【详解】===1,故答案为1.本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.12、25°.【解析】在Rt△ABC中,∠BAC=65°,所以∠ABC=90°-65°=25°.又AB∥CD,所以∠BCD=∠ABC=25°.13、【解析】依题意可得△ADE∽△ABC,根据相似三角形的对应边的比相等即可得出比值.【详解】解:∵DE∥BC∴△ADE∽△ABC∴∵∴∴,故答案为:.本题主要考查了相似三角形的性质。
