
人工智能行业研究报告(最全).pdf
123页人工智能行业研究报告概要概要人工智能是信息时代的尖端技术从人类建立起需要指导控制才能运行的计算机,到计算机拥有可以自己去学习的能力,这一飞跃对各行各业都产生了巨大的影响虽然此时此刻可能是下一个 AI 冬季(图 8)到来之前的给予承诺又让人失望的周期,但这些投资和新技术至少会给我们带来有形的机器学习生产力的经济利益与此同时,人工智能、机器人和无人驾驶汽车已经成为了流行文化甚至是政治话语的前沿而且我们在过去一年的研究使我们相信这不是一个错误的开始,而是一个拐点正如我们将在本报告中探讨的那样,这个变化的原因有显而易见的(更快更强的计算资源和爆炸式增长的数据库),也有细致入微(深度学习,专有硬件和开源的崛起)的这个 AI 拐点(AI inflection)中更令人兴奋的一个方面是现实世界的使用案例比比皆是虽然深度学习使计算机视觉和自然语言处理等技术有了显著的提高,比如苹果公司的 Siri ,亚马逊的 Alexa 和 Google 的图像识别,但是AI 不仅仅是科技技术(tech for tech),也就是大数据集与足够强大的技术相结合的情况下,价值正在被慢慢创建,竞争优势也变得越来越明显例如,在医疗保健中,图像识别技术可以提高癌症诊断的准确性。
在农业中,农民和种子生产商可以利用深度学习技术来提高作物产量在制药业中,深度学习可以用于改善药物的研发在能源方面,勘探效率正在提高,设备可用性正在不断增强在金融服务方面,通过开辟新的数据集,实现更快的分析,从而降低成本,提高回报AI 现在还处于发现其可被利用场景的早期阶段,这些必要的技术会通过基于云的服务实现大众化、平等化,我们相信随之而来的创新浪潮将在每个行业中创造新的赢家和输家AI 的广泛应用让我们得出了一个结论: 它是一种可以变革全球经济的技术,是提高生产力并结束美国生产率停滞增长的驱动力结合 GS首席经济学家 Jan Hatzius 的研究,我们明确了资本深化目前的停滞及其对美国生产率的相关影响我们相信,AI 技术将会驱动生产力的提高,就像 20世纪 90 年代那样,驱动企业投资更多的资本和劳动密集型项目, 加快发展的脚步, 提高盈利能力以及提高股票的估值启示启示虽然我们看到了人工智能可以及时地影响到每个公司、行业和一部分经济,但对投资者而言,我们认为这其中有四个影响最为显著 AI 和机器学习具有激发生产率增长周期的潜力,这会有利于经济的增长,提升企业的盈利能力,资本回报率和资产估值。
根据 GS首席经济学家 Jan Hatzius 所说:大体上而言, AI 看起来似乎比上一次创新浪潮更有可能在统计数据中捕捉到更有价值的东西,人工智能可以降低成本,减少对高附加值生产类型的劳动投入举个例子,这些在商业部门成本节约上的创新可能比在 iPhone 中增加应用程序的可用性和多用性更利于统计学家去捕获有价值的东西考虑人工智能对商业部门的成本结构的广泛影响,我有理由相信它会被统计学家接受,并且会出现在整体生产力数据中尖端技术 AI 和机器学习在速度上的价值有利于构建一种在建设数据中心和网络服务时让硬件更便宜的趋势我们认为这可能推动硬件,软件和服务支出的市场份额的大幅度改变 例如, 在 标准 数据中心计算资源上运行的 AWS工作负载的成本低至 $ 0.0065 / 小时,而在使用 AI 优化过的GPU上运行的成本为 0.900 美元一小时竞争优势我们看到了 AI 和机器学习具有重新调整每个行业的竞争秩序的潜力未能投资和利用这些技术的管理团队在和受益于战略智能的企业竞争时,有很大可能会被淘汰掉,因为这些技术可以让企业的生产力提高,并为它们创造资本效益在第 41 页开始的短文中,我们将研究这些竞争优势是如何在医疗保健、能源、零售、金融和农业等领域发展起来的。
创办新公司我们发现了 150 多家在过去十年中创建的人工智能和机器学习公司(附录 69-75)虽然我们相信人工智能的大部分价值都掌握在具有资源、数据和投资能力的大公司手中,但我们也期望风险投资家、企业家和技术专家可以继续推动新公司的创立,从而促进实质性的创新和价值创造,即使最后创业公司会被收购当然我们也不能忽视人工智能巨头 (人工智能领域的谷歌或 Facebook ) 的出现在接下来的篇幅中, 我们将深入探讨 AI 的技术, 历史,机器学习的生态系统以及这些技术在行业和领头公司中的应用什么是人工智能?什么是人工智能?人工智能是做出能够以人类智能的方式学习并解决问题的智能机器和计算机程序的理工科传统而言,该领域包括自然语言处理与翻译、视觉感知与模式识别,以及决策制定但该领域以及应用的复杂度都在急剧扩展在此报告中,我们的大部分分析集中在机器学习(人工智能的一个分支)与深度学习(机器学习的分支)上我们强调两点:简言之,机器学习是从样本和经验(即数据集)中进行学习的算法, 而不是依靠硬编码和预先定义的规则 换言之,也就是开发者不再告诉程序如何区分苹果和橘子,而是向算法输入数据(训练),然后自己学习如何区分苹果和橘子。
深度学习的重大发展是人工智能拐点背后的主要驱动深度学习是机器学习的一个子集在大部分传统的机器学习方法中,特征(即有预测性的输入或属性)由人来设计特征工程是一大瓶颈, 需要大量的专业知识 在无监督学习中,重要特征并非由人预定义,而是由算法学习并创造为了更加明了,我们不注重真人工智能、强人工智能或通用人工智能这样的概念,它们意味着复制人类智能,也经常出现在流行文化中虽然已经有了一些有潜力的突破,比如谷歌 DeepMind的 AlphaGo系统, 我们还是更注重立即有实在经济的人工智能发展为何人工智能发展加速?为何人工智能发展加速?深度学习能力的极大发展是如今人工智能拐点背后的催化剂之一深度学习的底层技术框架神经网络,已经存在了数十年, 但过去 5 到 10 年的 3 种东西改变了深度学习:1.数据随着全球设备、机器和系统的连接,大量的无结构数据被创造出来神经网络有了更多的数据,就变得更为有效,也就是说随着数据量增加,机器学习能够解决的问题也增加IoT 、低成本数据存储和处理(云)技术的成熟使得可用数据集的大小、结构都有了极大增长例如,特斯拉收集了 780mn英里的驾驶数据,而且通过他们的互连汽车,每 10 小时就能增加 100 万英里的数据。
此外,Jasper 有一个平台,能让多家汽车制造商和电信公司进行机器间的交流, 这家公司于今年 2 月份被 Cisco 收购Verizon 在 8 月份做了类似的投资,宣布收购 Fleetmatics ,Fleetmatics做的是将汽车上的远程传感器通过无线网络连接到云软件未来,5G网络的上线将会加速数据生成与传输的速率据 IDC 的 Digital Universe Report 显示,年度数据生成预期到 2020 年达到 44zettabytes ,表明我们正在见证应用这些技术的使用案例图 1: 年度数据生成预期到 2020 年达到 44zettabytes2. 更快的硬件GPU的再次使用、低成本计算能力的普遍化,特别是通过云服务,以及建立新的神经网络模型,已经极大的增加了神经网络产生结果的速度与准确率GPU和并行架构要比传统的基于数据中心架构的 CPU能更快的训练机器学习系统通过使用图像芯片,网络能更快的迭代,能在短期内进行更准确的训练同时,特制硅的发展,比如微软和百度使用的 FPGA , 能够用训练出的深度学习系统做更快的推断另外,从 1993 年开始超级计算机的原计算能力有了极大发展(图 2)。
在 2016 年,单张英伟达游戏显卡就有了类似于 2002 年之前最强大的超级计算机拥有的计算能力图 2:全球超级计算机的原计算性能,以 GFLOPs测试成本也有了极大的降低英伟达 GPU (GTX 1080 )有9 TFLOPS的性能, 只要 700 美元, 意味着每 GFLOPS只要 8 美分在 1961 年,串够 IBM 1620s 每提供 1GFLOPS需要的钱超过 9 万亿图 3:每单位计算的价格有了极大下降3. 更好、 更普遍可用的算法 更好的输入 (计算和数据)使得更多的研发是面向算法,从而支持深度学习的使用例如伯克利的 Caffe、谷歌的 TensorFlow 和 Torch 这样的开源框架比如,刚开源一周年的 TensorFlow ,成为了GitHub 上有最多 forked repositories 的框架虽然不是所有的人工智能发生于普遍可用的开源框架中,但开源确实在加速发展,而且也有更多先进的工具正在开源方向方向虽然本报告的重点是人工智能的发展方向以及公司如何把握这个方向,但是了解人工智能对我们生活的影响程度也是很重要的就在一年多以前,谷歌透露,它们已经开始将大量的搜索工作移植到了 RankBrain(一个人工智能系统),使其和链接(links )以及内容(content )成为了谷歌搜索算法的三个最重要的标志。
推荐引擎Netflix ,亚马逊 和 Pandora 都在使用人工智能来确定推荐什么样的电影和歌曲, 突出哪些产品 5 月,亚马逊开源了它们的深度可扩展稀疏传感网络引擎(theDeep Scalable Sparse Tensor Network Engine (DSSTNE) ,简称Destiny),它被用于产品推荐,同时可以被扩展以实现超越语言和语言理解以及异议识别的目的人脸识别 Google(FaceNet ) 和 Facebook(DeepFace )都投入了大量的技术来确定您的照片中的人脸和真实的人脸是不是几乎完全吻合1 月,苹果采取了进一步措施,购买了 Emotient (一个致力于通过读取人的面部表情来确定其情绪状态的 AI 创业公司)显然,这些技术远远不止于对照片进行标记虽然个人助理应用产品有无数的用户, 比如苹果的 Siri ,信用贷, 保险风险评估, 甚至天气预测 在接下来的篇幅中,我们探讨企业该如何使用这些技术来加速增长,降低成本和控制风险从这些技术及其使用这些技术的应用的发展速度来看,它们充其量不过可以为公司和投资者提供一些方向,以保持他们的竞争力加强未来的生产率加强未来的生产率美国的劳动生产率在 90 年代中期的快速增长和过去十年的缓慢增长和之后, 近年来已经停止增长了。
我们认为,就像 20 世纪 90 年代互联网技术被广泛采用那样, 消费类机器学习和人工智能的扩散有可能大幅度地改变全球产业的生产范式在整个行业中,我们发现在自动化的促使下,劳动时间减少了约 0.5-1.5 ,同时,由于 AI / ML技术带来的效率增益,到 2025 年,这些技术将对生产力增长产生高达51-1154 个基点(bps)的影响虽然我们期望 AI / ML可以随着时间同时提高生产率的分母和分子,不过我们认为最重要的是,早期的影响将是低工资任务的自动化,即以更少的劳动时间推动类似的产出增长水平我们的基本案例 AI /ML驱动提高了 97 个基点, 这意味着 2025 年的增长生产率中的 1.61 将由 IT 贡献,比 1995 - 2004 年高出 11个基点(图 9,10)图 9:生产力分析;单位百万美元,假设 2019 年之后GDP线性增长生态系统:云服务,开源在未来的生态系统:云服务,开源在未来的 AIAI 投资周期中的关投资周期中的关键受益人键受益人我们相信,在未来的几年中,一个公司利用人工智能技术的能力将成为体现公司在所有主要行业竞争力的一个属性虽然战略会因公司规模和行业而有所不同,但如果管理团队不会把重心放在领导人工智能和在此基础上的利益上,那么未来产品创新、劳动效率和资本杠杆都会存在落后的风险。
因此, 我们认为公司需要投资这些新技术以保持竞争力,同时这将导致对人工智能所以依赖的人才、服务和硬件的空前的需求作为比较,20 世纪 90 年代技术驱动的生产力繁荣推动了相。












