好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

高频电子线路实验指导书高频电子线路实验箱简介.doc

81页
  • 卖家[上传人]:博****1
  • 文档编号:465538281
  • 上传时间:2022-09-19
  • 文档格式:DOC
  • 文档大小:3.85MB
  • / 81 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 高频电子线路实验箱简介THCGP-1型仪器介绍● 信号源:本实验箱提供的信号源由高频信号源和音频信号源两部分组成,两种信号源的参数如下:1) 高频信号源输出频率范围:0.4MHz~45MHz(连续可调);频率稳定度:10E–4;输出波形:正弦波;输出幅度:1Vp-p 输出阻抗:75Ω2) 低频信号源: 输出频率范围:0.2kHz~20 kHz(连续可调);频率稳定度:10E–4;输出波形:正弦波、方波、三角波;输出幅度:5Vp-p; 输出阻抗:100Ω信号源面板如图所示使用时,首先按下“POWER”按钮,电源指示灯亮高频信号源的输出为RF1、RF2,频率调节步进有四个档位:1kHz、20kHz、500kHz、1MHz档按频率调节选择按钮可在各档位间切换,为1kHz、20kHz、500kHz档时相对应的LED亮,当三灯齐亮时,即为1MHz档旋转高频频率调节旋钮可以改变输出高频信号的频率另外可通过调节高频信号幅度旋钮来改变高频信号的输出幅度音频信号源可以同时输出正弦波、三角波、方波三种波形,各波形的频率调节共用一个频率调节旋钮,共有2个档位:2kHz、20kHz档按频率档位选择可在两个档位间切换,并且相应的指示灯亮。

      调节音频信号频率调节旋钮可以改变信号的频率分别改变三种波形的幅度调节旋钮可以调节输出的幅度 本信号源有内调制功能,“FM”按钮按下时,对应上方的指示灯亮,在RF1和RF2输出调频波,RF2可以外接频率计显示输出频率调频波的音频信号为正弦波,载波为信号源内的高频信号改变“FM频偏”旋钮调节输出的调频信号的调制指数按下“AM”按钮时,RF1、RF2输出为调幅波,同样可以在RF2端接频率计观测输出频率调节“AM调幅度”可以改变调幅波的幅度面板下方为5个射频线插座RF1”和“RF2”插孔为400kHz——45MHz的正弦波输出信号,在做实验时将RF1作为信号输出,RF2接配套的频率计观测频率另外3个射频线插座为音频信号3种波形的输出:正弦波、三角波、方波,频率范围为0.2k至20kHz● 等精度频率计(1) 等精度频率计面板示意图: (2)等精度频率计参数如下: 频率测量范围:20Hz——100MHz 输入电平范围:100mV——5V 测量误差:5×10-5±1个字 输入阻抗:1MΩ//40pF (3)使用说明: 频率显示窗口由五位数码管组成,在整个频率测量范围内都显示5位有效位数。

      按下‘电源’开关,电源指示灯亮,此时频率显示窗口的五位数码管全显示8.,且三档频率指示灯同时亮,约两秒后五位数码全显示0,再进入测量状态若输入信号的频率在20.000Hz——999.99Hz范围内,Hz指示灯亮;输入信号的频率在1.0000kHz——999.99kHz范围内,kHz指示灯亮;输入信号的频率在1.0000MHz以上,MHz指示灯亮;当输入信号小于100kHz时,应按下‘频率选择’按钮,此时‘频率选择’指示灯亮;当输入信号大于100kHz时,应弹开‘频率选择’按钮,此时‘频率选择’指示灯灭产品布局简图实验一 高频小信号调谐放大器实验一、实验目的1.掌握小信号调谐放大器的基本工作原理2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算3.了解高频小信号放大器动态范围的测试方法二、实验原理图1-1(a) 单调谐小信号放大   图1-1(b) 双调谐小信号放大(一)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大其实验单元电路如图1-1(a)所示该电路由晶体管、选频回路二部分组成它不仅对高频小信号进行放大,而且还有一定的选频作用。

      本实验中输入信号的频率基极偏置电阻、、和射极电阻决定晶体管的静态工作点可变电阻改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益表征高频小信号调谐放大器的主要性能指标有谐振频率,谐振电压放大倍数,放大器的通频带BW及选择性(通常用矩形系数来表示)等放大器各项性能指标及测量方法如下:1.谐振频率放大器的调谐回路谐振时所对应的频率称为放大器的谐振频率,对于图1.1(a)所示电路(也是以下各项指标所对应电路),的表达式为式中,L为调谐回路电感线圈的电感量;CΣ为调谐回路的总电容,CΣ的表达式为式中,为晶体管的输出电容;为晶体管的输入电容;为初级线圈抽头系数为次级线圈抽头系数谐振频率的测量方法是:用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点2.电压放大倍数放大器的谐振回路谐振时,所对应的电压放大倍数称为调谐放大器的电压放大倍数的表达式为式中,为谐振回路谐振时的总电导要注意的是本身也是一个复数,所以谐振时输出电压与输入电压相位差不是而是为的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量图1-1(a)中输出信号及输入信号的大小,则电压放大倍数由下式计算: 或3.通频带由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数下降到谐振电压放大倍数的0.707倍时所对应的频率偏移称为放大器的通频带BW,其表达式为BW=式中,为谐振回路的有载品质因数。

      分析表明,放大器的谐振电压放大倍数与通频带BW的关系为上式说明,当晶体管选定即确定,且回路总电容为定值时,谐振电压放大倍数与通频带BW的乘积为一常数这与低频放大器中的增益带宽积为一常数的概念是相同的图1-2 谐振曲线通频带BW的测量方法:是通过测量放大器的谐振曲线来求通频带测量方法可以是扫频法,也可以是逐点法逐点法的测量步骤是:先调谐放大器的谐振回路使其谐振,记下此时的谐振频率及电压放大倍数然后改变高频信号发生器的频率(保持其输出电压不变),并测出对应的电压放大倍数由于回路失谐后电压放大倍数下降,所以放大器的谐振曲线如图1-2所示可得:通频带越宽放大器的电压放大倍数越小要想得到一定宽度的通频宽同时又能提高放大器的电压增益,除了选用较大的晶体管外,还应尽量减小调谐回路的总电容量如果放大器只用来放大来自接收天线的某一固定频率的微弱信号,则可减小通频带,尽量提高放大器的增益4.选择性──矩形系数调谐放大器的选择性可用谐振曲线的矩形系数时来表示,如图1-2所示的谐振曲线,矩形系数为电压放大倍数下降到0.1时对应的频率偏移与电压放大倍数下降到0.707时对应的频率偏移之比,即=上式表明,矩形系数越小,谐振曲线的形状越接近矩形,选择性越好,反之亦然。

      一般单级调谐放大器的选择性较差(矩形系数远大于1),为提高放大器的选择性,通常采用多级单调谐回路的谐振放大器可以通过测量调谐放大器的谐振曲线来求矩形系数二)双调谐放大器双调谐放大器具有频带较宽、选择性较好的优点双调谐回路谐振放大器是将单调谐回路放大器的单调谐回路其原理基本相同1.电压增益为2.通频带3.选择性─—矩形系数 三、实验步骤(一)单调谐小信号放大器单元电路实验1.根据电路原理图熟悉实验板电路,并在电路板上找出与原理图相对应的各测试点通讯可调器件(具体指出)2.按下面框图(图1-3)所示搭建好测试电路 图1-3 高频小信号调谐放大器测试连接框图注:图中符号表示高频连接线3.打开小信号调谐放大器的电源开关,并观察工作指示灯是否点亮,红灯为+12V电源指示灯,绿灯为-12V电源指示灯以后实验步骤中不再强调打开实验模块电源开关步骤)4.调整晶体管的静态工作点:在不加输入信号时用万用表(直流电压测量档)测量电阻两端的电压(即 )和两端的电压(即 ),调整可调电阻,使 ,记下此时的 、 ,并计算出此时的 。

      5.按下信号源和频率计的电源开关,此时开关下方的工作指示灯点亮6.调节信号源“RF幅度”和“频率调节”旋钮,使输出端口“RF1”和“RF2”输出频率为12MHz的高频信号将信号输入到2号板的J4口在TH1处观察信号峰-峰值约为50mV7.调谐放大器的谐振回路使其谐振在输入信号的频率点上:将示波器探头连接在调谐放大器的输出端即TH2上,调节示波器直到能观察到输出信号的波形,再调节中周磁芯使示波器上的信号幅度最大,此时放大器即被调谐到输入信号的频率点上8.测量电压增益在调谐放大器对输入信号已经谐振的情况下,用示波器探头在TH1和TH2分别观测输入和输出信号的幅度大小,则 即为输出信号与输入信号幅度之比9.测量放大器通频带对放大器通频带的测量有两种方式,其一是用频率特性测试仪(即扫频仪)直接测量;其二则是用点频法来测量:即用高频信号源作扫频源,然后用示波器来测量各个频率信号的输出幅度,最终描绘出通频带特性,具体方法如下:通过调节放大器输入信号的频率,使信号频率在谐振频率附近变化(以20KHz或500KHz为步进间隔来变化),并用示波器观测各频率点的输出信号的幅度,然后就可以在如下的“幅度一频率”坐标轴上标示出放大器的通频带特性。

      10.测量放大器的选择性描述放大器选择性的最主要的一个指标就是矩形系数,这里用和来表示:       式中,2为放大器的通频带;2和2分别为相对放大倍数下降至0.1和0.01处的带宽用第9步中的方法,我们就可以测出2、2和2的大小,从而得到和的值注意:对高频电路而言,随着频率升高,电路分布参数的影响将越来越大,而我们在理论计算中是没有考虑到这些分布参数的,所以实际测试结果与理论分析可能存在一定的偏差另外,为了使测试结果准确,应使仪器的接地尽可能良好二)双调谐小信号放大器的测试方法和测试步骤与单调谐放大电路基本相同,只是在以下两个方面稍作改动:其一是输入信号的频率改为465KHz(峰-峰值200mV);其二是在谐振回路的调试时,对双调谐回路的两个中周要反复调试才能最终使谐振回路谐振在输入信号的频点上,具体方法是,按图1-3连接好测试电路并打开信号源及放大器电源之后,首先调试放大电路的第一级中周,让示波器上被测信号幅度尽可能大,然后调试第二级中周,也是让示波器上被测信号的幅度尽可能大,这之后再重复第一级和第二级中周,直到输出信号的幅度达到最大,这样,放大器就已经谐振到输入信号的频点上了11.同单调谐实验,做双调谐实验,并将两种调谐电路进行比较。

      四、实验报告要求1.写明实验目的2.画出实验电路的直流和交流等效电路3.计算直流工作点,与实验实测结果比较4.整理实验数据,并画出幅频特性五、实验仪器1.高频实验箱           1台2.双踪示波器           1台3.万用表             1只4.扫频仪(可选)         1台实验二  集成选频放大器一、实验目的1.熟悉集成放大器的内部工作原理2.熟悉陶瓷滤波器的选频特性3.掌握自动增益控制电路(AGC)的基本工作原理二、实验内容1.测量集成选频放大器的增益2.测量集成选频放大器的通频带。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.