
2024年湖北省荆州市洪湖市数学九上开学质量检测模拟试题【含答案】.doc
23页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………2024年湖北省荆州市洪湖市数学九上开学质量检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在垃圾分类打卡活动中,小丽统计了本班月份打卡情况:次的有人,次的有人,次的有人,次的有人,则这个班同学垃圾分类打卡次数的中位数是( )A.次 B.次 C.次 D.次2、(4分)某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10,6,9,11,8,10. 下列关于这组数据描述正确的是 ( )A.中位数是10 B.众数是10 C.平均数是9.5 D.方差是163、(4分)如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=A.40° B.50°C.60° D.75°4、(4分)下列语句描述的事件中,是不可能事件的是( )A.只手遮天,偷天换日 B.心想事成,万事如意C.瓜熟蒂落,水到渠成 D.水能载舟,亦能覆舟5、(4分)如图,在Rt△ABC中,∠ACB =90°,∠ABC=30°,将△ABC绕点C顺时针旋转角(0°<<180°)至△A′B′C,使得点A′恰好落在AB边上,则等于( ).A.150° B.90°C.60° D.30°6、(4分)如图,四边形ABCD中,对角线AC与BD相交于O,不能判定四边形ABCD是平行四边形的是( )A.AB∥CD,AO=CO B.AB∥DC,∠ABC=∠ADCC.AB=DC,AD=BC D.AB=DC,∠ABC=∠ADC7、(4分)如图,将△ABC 绕点 A 按顺时针方向旋转 120°得到△ADE,点 B 的对应点是点 E,点 C 的对应点是点 D,若∠BAC=35°,则∠CAE 的度数为( )A.90° B.75° C.65° D.85°8、(4分)如图为一△ABC,其中D.E两点分别在AB、AC上,且AD=31,DB=29,AE=30,EC=32.若∠A=50°,则图中∠1、∠2、∠3、∠4的大小关系,下列何者正确?()A.∠1>∠3 B.∠2=∠4 C.∠1>∠4 D.∠2=∠3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平面直角坐标系中,已知OA=4,则点A的坐标为____________,直线OA的解析式为______________.10、(4分)计算的结果是 .11、(4分)如图,正方形ABCD的顶点A,B在x轴的正半轴上,对角线AC,BD交于点P,反比例函数的图象经过P,D两点,则AB的长是______.12、(4分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为4,则第n个矩形的面积为_____.13、(4分)如图,在中,,,,若点P是边AB上的一个动点,以每秒3个单位的速度按照从运动,同时点Q从以每秒1个单位的速度运动,当一个动点到达终点时,另一个动点也随之停止运动。
在运动过程中,设运动时间为t,若为直角三角形,则t的值为________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,城有肥料吨,城有肥料吨,现要把这些肥料全部运往、两乡、从城往、两乡运肥料的费用分别是元/吨和元/吨;从城往、两多运肥料的费用分别是元/吨和元/吨,现乡需要肥料吨,乡需要肥料吨,怎样调运可使总运费最少?15、(8分)小东到学校参加毕业晚会演出,到学校时发现演出道具还放在家中,此时距毕业晚会开始还有25分钟,于是立即步行回家.同时,他父亲从家里出发骑自行车以他3倍的速度给他送道具,两人在途中相遇,相遇后,小东父亲立即骑自行车以原来的速度载小东返回学校.图中线段AB、OB表示相遇前(含相遇)父亲送道具、小东取道具过程中,各自离学校的路程S(米)与所用时间t分)之间的函数关系,结合图象解答下列问题.(1)求点B坐标;(2)求AB直线的解析式;(3)小东能否在毕业晚会开始前到达学校?16、(8分) “赏中华诗词,寻文化基因,品生活之美”某校举办了首届“中国诗词比赛”,全校师生同时默写50首古诗,每正确默写出一首古诗得2分,结果有600名学生进入决赛,从进入决赛的600名学生中随机抽取40名学生进行成绩分析,根据比赛成绩绘制出部分频数分布表和部分频数分布直方图如下列图表组别成绩x(分)频数(人数)第1组60≤x<684第2组68≤x<768第3组76≤x<8412第4组84≤x<92a第5组92≤x<10010第3组12名学生的比赛成绩为:76、76、78、78、78、78、78、78、80、80、80、82请结合以上数据信息完成下列各题:(1)填空:a= 所抽取的40名学生比赛成绩的中位数是 (2)请将频数分布直方图补充完整(3)若比赛成绩不低于84分的为优秀,估计进入决赛的学生中有多少名学生的比赛成绩为优秀?17、(10分)如图,四边形和都是平行四边形.求证:四边形是平行四边形.18、(10分)解方程:B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在平行四边形ABCD中,对角线AC⊥BD,AC=10,BD=24 ,则AD=____________20、(4分)已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为_____cm.21、(4分)化简:_______.22、(4分)如图,△ABC中,AB=AC=5,BC=6,M为BC的中点,MN⊥AC于N点,则MN=(________).23、(4分)一组数据3,5,a,4,3的平均数是4,这组数据的方差为______.二、解答题(本大题共3个小题,共30分)24、(8分)四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.求∠BAD的度数;25、(10分)已知:一个正比例函数与一个一次函数的图象交于点A(1,4)且一次函数的图象与x轴交于点B(3,0),坐标原点为O.(1)求正比例函数与一次函数的解析式;(2)若一次函数交与y轴于点C,求△ACO的面积.26、(12分)已知x=2+,求代数式(7-4)x2+(2-)x+的值.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】解:这个班同学垃圾分类打卡人数是50人,打卡次数从大到小排列,第25、26个数分别是30、28,故中位数是(次,故选:.本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.2、B【解析】【分析】根据中位数,众数,平均数,方差的意义进行分析.【详解】由大到小排列,得6、8、9、10、10、11,故中位数为(9+10)÷2=9.5,故选项A错误;由众数的概念可知,10出现次数最多,可得众数为10,故选项B正确;=9,故选项C错误;方差S2= [(10-9)2+(6-9)2+(9-9)2+(11-9)2+(8-9)2+(10-9)2]= ,故选项D错误.故选:B【点睛】本题考核知识点:中位数,众数,平均数,方差. 解题关键点:理解中位数,众数,平均数,方差的意义.3、B【解析】分析:本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°-∠1的值.详解:∵∠B=∠D=90°在Rt△ABC和Rt△ADC中,∴Rt△ABC≌Rt△ADC(HL)∴∠2=∠ACB=90°-∠1=50°.故选B.点睛:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.4、A【解析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是不可能事件,故选项正确;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是随机事件,故选项错误.故选:A.此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、C【解析】由在Rt△ABC中,∠ACB=90°,∠ABC=30°,可求得∠A的度数,又由将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,易得△ACA′是等边三角形,继而求得答案.【详解】∵在Rt△ABC中,∠ACB=90°,∠ABC=30°,∴∠A=90°−∠ABC=60°,∵将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A′B′C′,∴AC=A′C,∴△ACA′是等边三角形,∴α=∠ACA′=60°.故选C.本题考查了旋转的性质及等边三角形的性质,熟练掌握性质定理是解题的关键.6、D【解析】【分析】根据平行四边形的判定定理逐项进行分析即可得.【详解】A、∵AB//CD,∴∠ABO=∠CDO,又∵∠AOB=∠COD,AO=OC,∴△AOB≌△COD,∴AB=CD,∴ABCD,∴四边形ABCD是平行四边形,故不符合题意; B、∵AB//CD,∴∠ABO=∠CDO,又∵∠ABC=∠ADC,∴∠CBD=∠ADB,∴AD//BC,∴四边形ABCD是平行四边形,故不符合题意;C、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故不符合题意; D、AB=DC,∠ABC=∠ADC,不能得到四边形ABCD是平行四边形,故符合题意,故选D.【点睛】本题考查了平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.7、D【解析】由题意可得∠BAE是旋转角为120°且∠BAC=35°,可求∠CAE的度数.【详解】∵将△ABC绕点A按顺时针方向旋转120°得到△ADE∴∠BAE=120°且∠BAC=35°∴∠CAE=85°故选D.本题考查了旋转的性质,关键是熟练运用旋转的性质解决问题.8、D【解析】本题需先根据已知条件得出AD与AC的比值,AE与AB的比值,从而得出△ADE∽△ACB,最后即可求出结果.【详解】∵AD=31,BD。
