浙教初中数学九上《45-相似三角形的性质及应用》word教案-(6).docx
6页教学目标】一、知识和技能1、 经历相似三角形性质“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的探究过程.2、掌握“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的两个性质.3、会运用上述两个性质解决简单的几何问题.引导学生根据已有的知识经验学生发现问题、自主探索,在学习的过程中让学生体验从特殊到一般,从猜想到逻辑推理的数学知识形成过程三、情感、态度与价值观激发学生的学习兴趣,培养想象力,挖掘学习动力,落实合作学习,主动探究的思想,培养学生数学应用意识【教学重点】关于相似三角形的周长和面积的两个性质及对应线段的性质.【教学难点】相似三角形的性质的证明,要用到相似三角形的判定及性质,过程比较复杂,是本节教学的难点.【教学过程】一、问题情境某施工队在道路拓宽施工时遇到这样一个问题,马路旁边原有一个面积为100平方米,周长为80米的三角形绿化地,由于马路拓宽绿地被削去了一个角,变成了一个梯形,原绿化地一边AB的长由原来的30米缩短成18米.现在的问题是:被削去的部分面积有多大?它的周长是多少?思考:你能够将上面生活中的问题转化为数学问题吗?二、新课1、如图,4 4正方形网格看一看: ΔABC与ΔA′B′C′有什么关系?为什么?(相似)算一算: ΔABC与ΔA′B′C′的相似比是多少?()ΔABC与ΔA′B′C′的周长比是多少? ()面积比是多少?(2)想一想:上面两个相似三角形的周长比与相似比有什么关系?面积比与相似比又有什么关系?结论:相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方 是不是任何相似三角形都有此关系呢? 你能加以验证吗?已知:如图4-24,△ABC∽△A′B′C′,且相似比为k.求证:=k,=k2例题:已知:如图,△ABC∽ △A′B′C′, △ABC与 △A′B′C′的相似比是k,AD、A′D′是对应高。
求证:=k 证明:∵△ABC∽△A′B′C′ ∴∠B= ∠B′∵AD、A′D′是对应高∴∠ADB=∠A′D′B′=90O ∴ △ABD∽△A’B’D’练一练:1、已知两个三角形相似,请完成下列表格__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________相似比2周长比面积比10000注:周长比等于相似比,已知相似比或周长比,求面积比要平方,而已知面积比,求相似比或周长比则要开方。
2、如图,D、E分别是AC,AB上的点,∠ADE=∠B,AG⊥BC于点G,AF⊥DE于点F.若AD=3,AB=5,求:(1);(2)△ADE与△ABC的周长之比;(3)△ADE与△ABC的面积之比.例1 如图:是某市部分街道图,比例尺为1∶10000;请估计三条道路围成的三角形地块ABC的实际周长和面积. 问题解决:如图,已知DE//BC,AB=30m,BD=18m, ΔABC的周长为80m,面积为100m2,求ΔADE的周长和面积拓展延伸__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________1.过E作EF//AB交BC于F,其他条件不变,则ΔEFC的面积等于多少?BDEF面积为多少?2.若设SΔABC=S, SΔADE=S1, SΔEFC=S2.请猜想:S与S1、S2之间存在怎样的关系?你能加以验证吗?证明:DE//BC △ADE∽△ABC =()2 =FE//BA △CFE∽△CBA =()2 =+=1类比猜想如图,DE//BC,FG//AB,MN//AC, 且DE、FG、MN交于点P。
若记SΔDPM= S1, SΔPEF= S2, SΔGNP= S3,SΔABC= S、S与S1、 S2、S3之间是否也有类似结论?猜想并加以验证练一练:书本P115课内练习1、2练一练(分组练习)证明:相似三角形的对应高的比,对应中线的比,对应角平分线的比等于相似比能力训练1.若两个相似三角形的相似比是2∶3,则它们的对应高线的比是 ,对应中线的比是 ,对应角平分线的比是 ,周长比是 ,面积比是 2.两个等边三角形的面积比是3∶4,则它们的边长比是 ,周长比是 3.某城市规划图的比例尺为1∶4000,图中一个氯化区的周长为15cm,面积为12cm2,则这个氯化区的实际周长和面积分别为多少?4、在△ABC中,DE∥BC,E、D分别在AC、AB上,EC=2AE,则S△ADE∶S四边形DBCE的比为______5、如图, △ABC中,DE∥FG∥BC,AD=DF=FB,则S△ADE:S四边形DFGE:S四边形FBCG=______6.已知:梯形ABCD中,AD∥BC,AD=36,BC=60cm,延长两腰BA,CD交于点O,OF⊥BC,交AD于E,EF=32cm,则OF=_______.7、ΔABC中,AE是角平分线,D是AB上的一点,CD交AE于G,∠ACD=∠B,且AC=2AD.则ΔACD∽Δ______.它们的相似比K =_______.探究活动:1、书本P115已知△ABC,如图,如果要作与BC平行的直线把△ABC划分成两部分,使这两部分(三角形与四边形)的面积之比为1∶1该怎么作?如果要使划分成的两部分的面积之比为1∶2呢?如果要使划分成的两部分的面积之比为1∶n呢?(平行线等分线段、平行线分线段成比例定理)2.阅读下面的短文,并解答下列问题: 我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体. 如图,甲、乙是两个不同的正方体,正方体都是相似体,它们的一切对应线段之比都等于相似比(a∶b).=()2 =()3练习(1)下列几何体中,一定属于相似体的是( ) A.两个球体 B.两个锥体 C.两个圆柱体D.两个长方体(2)请归纳出相似体的三条主要性质:①相似体的一切对应线段(或弧)长的比等于______;②相似体表面积的比等于__ ____;③相似体体积比等于___ .(3)假定在完全正常发育的条件下,不同时期的同一人的人体是相似体,一个小朋友上幼儿园时身高为1.1米,体重为18千克,到了初三时,身高为1.65米,问他的体重是多少?(不考虑不同时期人体平均密度的变化)设他的体重为x千克,根据题意得=()3解得x=60.75(千克)三、小结四、作业:见作业本板书设计 附件1:律师事务所反盗版维权声明附件2:独家资源交换签约学校名录(放大查看) 。





