
郑州市重点中学2024年数学九年级第一学期开学达标检测模拟试题【含答案】.doc
27页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………郑州市重点中学2024年数学九年级第一学期开学达标检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )A.A点 B.B点 C.C点 D.D点2、(4分)将点P(5,3)向左平移4个单位,再向下平移1个单位后,落在函数y=kx﹣2的图象上,则k的值为( )A.k=2 B.k=4 C.k=15 D.k=363、(4分)在□ABCD中,∠A:∠B=7:2,则∠C等于( )A.40° B.80° C.120° D.140°4、(4分)据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x分钟后,水龙头滴出y毫升的水,请写出y与x之间的函数关系式是( )A.y=0.05x B.y=5x C.y=100x D.y=0.05x+1005、(4分)如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为( )A. B. C. D.6、(4分)菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为( )A.8 B.20 C.8或20 D.107、(4分)下列说法正确的是( )A.是二项方程 B.是二元二次方程C.是分式方程 D.是无理方程8、(4分)下列式子成立的是( )A.=3 B.2﹣=2 C.= D.()2=6二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)计算的倒数是_____.10、(4分)如图,在中,为边上一点,以为边作矩形.若,,则的大小为______度. 11、(4分)如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△AED;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CDE;⑤S△ABE=S△CEF.其中正确的是_____.12、(4分)如图,在矩形ABCD中,AB=4,BC,对角线AC、BD相交于点O,现将一个直角三角板OEF的直角顶点与O重合,再绕着O点转动三角板,并过点D作DH⊥OF于点H,连接AH.在转动的过程中,AH的最小值为_________.13、(4分)如图,函数y=kx+b(k≠0)的图象经过点(1,2),则不等式kx+b>2的解集为______.三、解答题(本大题共5个小题,共48分)14、(12分)已知四边形ABCD是菱形(四条边都相等的平行四边形).AB=4,∠ABC=60°,∠EAF的两边分别与边BC,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系为: .(2)如图2,当点E是线段CB上任意一点时(点E不与B,C重合),求证:BE=CF;(3)求△AEF周长的最小值.15、(8分)已知:正方形ABCD中,对角线AC、BD交于点O,过O点的两直线OE、OF互相垂直,分别交AB、BC于E、F,连接EF.(1)求证:OE=OF;(2)若AE=4,CF=3,求EF的长;(3)若AB=8cm,请你计算四边形OEBF的面积.16、(8分)如图1,菱形纸片,对其进行如下操作:把翻折,使得点与点重,折痕为;把翻折,使得点与点重合,折痕为 (如图2),连结.设两条折痕的延长线交于点.(1)请在图2中将图形补充完整,并求的度数;(2)四边形是菱形吗?说明理由.17、(10分)如图,在平面直角坐标系中,直线交轴于点,交轴于点.点在轴的负半轴上,且的面积为8,直线和直线相交于点.(1)求直线的解析式;(2)段上找一点,使得,线段与相交于点.①求点的坐标;②点在轴上,且,直接写出的长为 .18、(10分)如图,已知菱形 ,, 分别是 的中点,连接 、. 求证:四边形 是矩形.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知点A在反比例函数y=(k≠0)的图象上,过点A作AM⊥x轴于点M,△AMO的面积为3,则k=_____.20、(4分)当x=1时,分式无意义;当x=2时,分式的值为0,则a+b=_____.21、(4分)化简的结果是______22、(4分)如图,正方形ABCD的边长为4,P为正方形边上以C为起点,沿CBA的路径移动的动点,设P点经过的路径长为,△APD的面积是,则与的函数关系式为_______.23、(4分)如图,在中,,、分别是、的中点,延长到点,使,则_____________.二、解答题(本大题共3个小题,共30分)24、(8分)某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,求这块草坪的面积.25、(10分)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘新工人若干名(新工人人数少于10人)和抽调的熟练工合作,刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?26、(12分)为了庆祝即将到来的2018年国庆节,某校举行了书法比赛,赛后整理了参赛同学的成绩,并制作了如下两幅不完整的统计图表分数段频数频率60≤x<70300.1570≤x<80m0.4580≤x<9060n90≤x<100200.1请根据以上图表提供的信息,解答下列问题:(1)这次共调查了 名学生;表中的数m= ,n= .(2)请补全频数直方图;(3)若绘制扇形统计图,则分数段60≤x<70所对应的扇形的圆心角的度数是 .参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】试题解析:当以点B为原点时,A(-1,-1),C(1,-1),则点A和点C关于y轴对称,符合条件,故选B.【点睛】本题考查的是关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键.2、B【解析】根据点的平移规律,得出平移后的点的坐标,将该点坐标代入y=kx﹣2中求k即可.【详解】将点P(5,3)向左平移1个单位,再向下平移1个单位后点的坐标为(1,2),将点(1,2)代入y=kx﹣2中,得k﹣2=2,解得k=1.故选B.本题考查了一次函数图象上点的坐标特点,点的坐标平移规律.关键是找出平移后点的坐标.3、A【解析】根据平行四边形的性质得到AD∥BC,AB∥CD,由平行线的性质得到∠A,再由平行线的性质得到∠C=40°.【详解】根据题意作图如下:因为BCD是平行四边形,所以AD∥BC,AB∥CD;因为AD∥BC,所以∠A是∠B的同的同旁内角,即∠A+∠B=180°;又因为∠A:∠B=7:2,所以可得∠A==140°;又因为AB∥CD,所以∠C是∠A的同旁内角,所以∠C=180°-140°=40°.故选择A.本题考查平行四边形的性质和平行线的性质,解题的关键是掌握平行四边形的性质和平行线的性质.4、B【解析】试题分析:每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x分钟可滴100×0.05x毫升,据此即可求解.因此,y=100×0.05x,即y=5x.故选B.考点:函数关系式.5、B【解析】根据S△ABE=S矩形ABCD=1=•AE•BF,先求出AE,再求出BF即可.【详解】如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=•AE•BF,∴BF=.故选:B.本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.6、B【解析】试题分析:解方程可得:y=2或y=5,当边长为2时,对角线为6就不成立;则边长为5,则周长为20.考点:(1)、菱形的性质;(2)、方程的解7、A【解析】根据整式方程、分式方程和无理方程的概念逐一判断即可得.【详解】A.方程是一般式,且方程的左边只有2项,此方程是二项方程,此选项正确;B.x2y−y=2是二元三次方程,此选项错误;C.是一元一次方程,属于整式方程,此选项错误;D.是一元二次方程,属于整式方程;故选A.本题主要考查无理方程,解题的关键是掌握整式方程、分式方程和无理方程的定义.8、A【解析】运用二次根式的相关定义、运算、化简即可求解.【详解】解:A:是求的算术平方根,即为3,故正确;B:2﹣=,故B错误;C:上下同乘以,应为,故C错误;D:的平方应为3,而不是6,故D错误.故答案为A.本题主要考查二次根式的定义、运算和化简;考查知识点较多,扎实的基础是解答本题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】求出tan30°,根据倒数的概念计算即可.【详解】,,则的倒数是,故答案为:.本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.10、【解析】利用三角形内角和求出∠B的度数,利用平行四边形的性质即可解答问题.【详解】解:在矩形AEFG中,∠AEF=90°∵∠AEB+∠AEF+∠CEF=180°,∠CEF=15°∴∠AEB=75°∵∠BAE+∠B+∠AEB=180°∠BAE=40°∴∠B=65°∵∠D=∠B∴∠D=65°故答案为65°考察了平行四边形的性质及三角形的内角和,掌握平行四边形的性质是解题的关键.11、①②⑤【解析】由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由S。
