2012年普通高等学校招生全国统一考试---新课标全国卷文科数学一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1、已知集合A={x|x2-x-2<0},B={x|-10,,直线和是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=(A) (B) (C) (D)【解析】因为和是函数图象中相邻的对称轴,所以,即.又,所以,所以,因为是函数的对称轴所以,所以,因为,所以,检验知此时也为对称轴,所以选A.【答案】A10.等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为( ) 【解析】设等轴双曲线方程为,抛物线的准线为,由,则,把坐标代入双曲线方程得,所以双曲线方程为,即,所以,所以实轴长,选C.【答案】C11.当00)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(I)若∠BFD=90°,△ABD的面积为4,求p的值及圆F的方程;(II)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.(21)(本小题满分12分)设函数f(x)= ex-ax-2(Ⅰ)求f(x)的单调区间(Ⅱ)若a=1,k为整数,且当x>0时,(x-k) f´(x)+x+1>0,求k的最大值请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号.(22)(本小题满分10分)选修4-1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF//AB,证明:(Ⅰ)CD=BC;(Ⅱ)△BCD∽△GBD(23)(本小题满分10分)选修4—4;坐标系与参数方程 已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A、B、C、D以逆时针次序排列,点A的极坐标为(2,)(Ⅰ)求点A、B、C、D 的直角坐标;(Ⅱ)设P为C1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2的取值范围.(24)(本小题满分10分)选修4—5:不等式选讲 已知函数f(x) = |x + a| + |x-2|.(Ⅰ)当a =-3时,求不等式f(x)≥3的解集;(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.- 10 -2012年普通高等学校招生全国统一考试文科数学一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1)已知集合,,则(A) (B) (C) A=B (D)(2)复数的共轭复数是:(A)2+i (B)2-i (C)-1+i (D)-1-i开始A=xB=xx>A否输出A,B是输入N,a1,a2,…,aN结束x0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=(A) (B) (C) (D)(10)等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,,则的实轴长为A) (B) (C) (D) (11)当0