九年级数学上册-弧长及扇形的面积教案-人教新课标版.doc
5页弧长及扇形的面积教学目标(一)教学知识点1.经历探索弧长计算公式及扇形面积计算公式的过程;2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题.(二)能力训练要求1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力.2.了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.(三)情感与价值观要求1.经历探索弧长及扇形面积计算公式,让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论确实定性.2.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.教学重点1.经历探索弧长及扇形面积计算公式的过程.2.了解弧长及扇形面积计算公式.3.会用公式解决问题.教学难点1.探索弧长及扇形面积计算公式.2.用公式解决实际问题.教学过程Ⅰ.创设问题情境,引入新课[师]在小学我们已经学习过有关圆的周长和面积公式,弧是圆周的一局部,扇形是圆的一局部,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索.Ⅱ.新课讲解一、复习1.圆的周长如何计算?2.圆的面积如何计算?3.圆的圆心角是多少度?[生]假设圆的半径为r,那么周长l=2πr,面积S=πr2,圆的圆心角是360.二、探索弧长的计算公式投影片(3.7A)如图,某传送带的一个转动轮的半径为10cm.(1)转动轮转一周,传送带上的物品A被传送多少厘米?(2)转动轮转1,传送带上的物品A被传送多少厘米?(3)转动轮转n,传送带上的物品A被传送多少厘米?[师]分析:转动轮转一周,传送带上的物品应被传送一个圆的周长;因为圆的周长对应360的圆心角,所以转动轮转1,传送带上的物品A被传送圆周长的;转动轮转n,传送带上的物品A被传送转1时传送距离的n倍.[生]解:(1)转动轮转一周,传送带上的物品A被传送2π10=20πcm;(2)转动轮转1,传送带上的物品A被传送cm;(3)转动轮转n,传送带上的物品A被传送n=cm.[师]根据上面的计算,你能猜测出在半径为R的圆中,n的圆心角所对的弧长的计算公式吗?请大家互相交流.[生]根据刚刚的讨论可知,360的圆心角对应圆周长2πR,那么1的圆心角对应的弧长为,n的圆心角对应的弧长应为1的圆心角对应的弧长的n倍,即n.[师]表述得非常棒.在半径为R的圆中,n的圆心角所对的弧长(arclength)的计算公式为:l=.下面我们看弧长公式的运用.三、例题讲解投影片(3.7B)制作弯形管道时,需要先按中心线计算“展直长度〞再下料,试计算下列图中管道的展直长度,即的长(结果精确到0.1mm).分析:要求管道的展直长度,即求的长,根根弧长公式l=可求得的长,其中n为圆心角,R为半径.解:R=40mm,n=110.∴的长=πR=40π≈76.8mm.因此,管道的展直长度约为76.8mm.四、想一想投影片(3.7C)在一块空旷的草地上有一根柱子,柱子上拴着一条长3m的绳子,绳子的另一端拴着一只狗.(1)这只狗的最大活动区域有多大?(2)如果这只狗只能绕柱子转过n角,那么它的最大活动区域有多大?[师]请大家互相交流.[生](1)如图(1),这只狗的最大活动区域是圆的面积,即9π;(2)如图(2),狗的活动区域是扇形,扇形是圆的一局部,360的圆心角对应的圆面积,1的圆心角对应圆面积的,即9π=,n的圆心角对应的圆面积为n=.[师]请大家根据刚刚的例题归纳总结扇形的面积公式.[生]如果圆的半径为R,那么圆的面积为πR2,1的圆心角对应的扇形面积为,n的圆心角对应的扇形面积为n.因此扇形面积的计算公式为S扇形=πR2,其中R为扇形的半径,n为圆心角.五、弧长与扇形面积的关系[师]我们探讨了弧长和扇形面积的公式,在半径为R的圆中,n的圆心角所对的弧长的计算公式为l=πR,n的圆心角的扇形面积公式为S扇形=πR2,在这两个公式中,弧长和扇形面积都和圆心角n.半径R有关系,因此l和S之间也有一定的关系,你能猜得出吗?请大家互相交流.[生]∵l=πR,S扇形=πR2,∴πR2=RπR.∴S扇形=lR.六、扇形面积的应用投影片(3.7D)扇形AOB的半径为12cm,∠AOB=120,求的长(结果精确到0.1cm)和扇形AOB的面积(结果精确到0.1cm2)分析:要求弧长和扇形面积,根据公式需要知道半径R和圆心角n即可,此题中这些条件已经告诉了,因此这个问题就解决了.解:的长=π12≈25.1cm.S扇形=π122≈150.7cm2.因此,的长约为25.1cm,扇形AOB的面积约为150.7cm2.Ⅲ.课堂练习:随堂练习Ⅳ.课时小结本节课学习了如下内容:1.探索弧长的计算公式l=πR,并运用公式进行计算;2.探索扇形的面积公式S=πR2,并运用公式进行计算;3.探索弧长l及扇形的面积S之间的关系,并能一方求另一方.Ⅴ.课后作业:习题3.10Ⅵ.活动与探究如图,两个同心圆被两条半径截得的的长为6π cm,的长为10π cm,又AC=12cm,求阴影局部ABDC的面积.分析:要求阴影局部的面积,需求扇形COD的面积与扇形AOB的面积之差.根据扇形面积S=lR,l,那么需要求两个半径OC与OA,因为OC=OA+AC,AC,所以只要能求出OA即可.解:设OA=R,OC=R+12,∠O=n,根据条件有:得.∴3(R+12)=5R,∴R=18.∴OC=18+12=30.∴S=S扇形COD-S扇形AOB=10π30-6π18=96π cm2.所以阴影局部的面积为96π cm2.5爱心 用心 专心。





