好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

《奥数知识点汇总(初一)》.docx

11页
  • 卖家[上传人]:ali****an
  • 文档编号:265756008
  • 上传时间:2022-03-14
  • 文档格式:DOCX
  • 文档大小:175.94KB
  • / 11 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 奥数知识点汇总(初一)第一章 整数一、整数的几种表示方法:选择适当的方法表示一个整数,是解决整数问题的基本方法之一它是解决整数问题的前提1、整数的多项式表示法:任何一个十进制的正整数N都可表示为:,这里、、……、、各取于0——9这十个数字中的任何一个如果N是一个n+1位正整数,则≠0为了方便,也可将N简记作这种表示法称为整数的多项式表示法整数最左边的一位数字叫做整数N的首位数字,最右边的一位数字叫做整数N的末位数字2、整数的质因数连乘积表示法:(1)算术基本定理——每一个大于1的整数都能分解成质因数的乘积的形式,并且如果把质因数按照由小到大的顺序排在一起(相同因数的积写成幂的形式),那么这种分解方法是唯一的这就是说,任何一个整数N(N>1),都能唯一地表示成下面的形式:其中,,……为自然数,为质数,并且<<……<这种表示法称为整数的质因数连乘积表示法,又称为整数N的标准分解式2)约数个数定理——一个整数N(N>1),如果它的标准分解式为,那么它的约数个数为(1+)(1+)……(1+)另外,如果一个正整数N的约数个数是奇数,那么这个正整数N是完全平方数3、整数的带余式表示法:如果整数a除以正整数m所得的商是q,余数是r,那么a=mq+r,其中q、r都为整数,并且0≤r≤m-1。

      这种表示法称为整数的带余式表示法如果整数a、b分别除以正整数m所得得余数都是r,即a=mp+r,b=mq+r(p、q为整数),那么称a,b对于模m同余,记作a≡b(mod m)容易推知对于模m而言,与a同余的一切整数可以表示为mt+r (t为整数),这里r=0,1,……,m-1把所有这样的整数作为一类,称为以m为模的一个同余类一般地,对于模m而言,应当有m个同余类存在,可分别表示为:mt,mt+1,mt+2,……,mt+(m-1)(t为整数)任何一个整数必定属于并且也仅属于其中一个同余类这样一切整数就可以按照模m进行同余分类,把无数个整数分成有限个同余类,为我们解决问题带来方便特别地,按模2分类,就得奇数与偶数两类;例如按模3分类,就有三个同余类:3t,3t+1,3t+2(t为整数)有时将3t+2写成3t-1二、数的整除特性:任意两个整数相加、减、乘的结果都是整数,但两个整数相除,它们的商就不一定是整数了,也就是说,整数对加、减、乘的运算是封闭的,而对于除法并不是封闭的这样就出现了整除与余数的两个概念1、整除的定义:对于整数a、b(b≠0),如果a除以b得到的商是一个整数q,即a÷b=q或a=bq,则称a能被b整除,或称b能整除a,记作,此时a叫做b的倍数,b是a的因数;如果b不能整除a,记作ba2、数的整除的若干性质:根据整除的定义,有如下性质:(1)如果,,m,n为整数,那么.(2)如果,,那么。

      3)如果,且a、b互质,那么4)如果,,且a,c互质,那么5)n个连续整数的连乘积,一定能被1×2×3……×n整除3、数的整除特征:(1)能被2(或5)整除的数的特征:个位数字能被2(或5)整除2)能被4(或25)整除的数的特征:末两位数能被4(或25)整除3)能被8(或125)整除的数的特征:末三位数能被8(或125)整除4)能被3(或9)整除的数的特征:各位数字之后能被3(或9)整除5)能被11整除的数的特征:奇数位上数字之和与偶数位上数字之和的差能被11整除6)能被7、11、13整除的数的特征:奇位千进位数段之和与偶位千进位数段之和的差能被7、11、13整除例如,判别34425391能否被7、11、13整除,先从后往前分节,得34,425,391奇位千进位数段之和为34+391=425,偶位前进位数段之和为425,两者之差为425-425=0因为0能被7、11、13整除,所以34425391能被7、11、13整除上述性质与特征是解决整除问题的重要理论依据解决整除问题常用的方法有:利用数的整除特征,凑连续整数乘积法,整数的多项式表示法,按同余分类整数表示法、考虑余数法、奇偶性分析法等等。

      4、质数与合数:一个大于1的正整数a,如果只有1和a这两个约数,那么a叫做质数,也叫做素数;如果除了1和a这两个约数外,还有其他正约数,那么a叫做合数这样,自然数按约数的个数可分为0、1、质数和合数四类在关于质数与合数的问题中,除了广泛运用它们的定义外,还要运用如下关于质数与合数的性质:(1) 质数有无穷多个,最小的质数是2,不存在最大的质数2) 除2以外的全体偶数是合数,除2以外的全体质数是奇数3) 任何大于1的自然数都可以分解成质因数的乘积,即N=(N为大于1的自然数,为质数,为正整数)如果不考虑这些质因数的顺序,这种分解方法是唯一的质数与合数问题是数论中的另一个基本问题,解决的常用方法有质数分析法、分解质因数法、余数法、因式分解法等等5、最大公约数与最小公倍数:若是不全为零的整数,并且,则d叫做的公约数公约数中最大的数叫做这n个数的最大公约数,记作()=d若都是正整数,且()=1,则称这n个数互质或互素互质的数不一定都是质数,但几个不同的质数一定互质若和m均为正整数,且,则称m是的公倍数公倍数中最小的数叫做这n个数的最小公倍数,记作有关最大公约数和最小公倍数的性质如下:(1) 如果,那么(a,b)=b,[a,b]=a。

      2) 如果(a,b)=d,那么(ka,kb)=kd,(k为正整数)3) 如果[a,b]=m,那么[ka,kb]=km, ,(k为正整数,c为a,b的公约数)4) 如果(a,b)=1,那么(a,bc)=(a,c)(5) 如果(a,b)=d,[a,b]=m,则ab=md,或者m=,6、整数问题:整数有三种表示方法:多项式表示法、质因数表示法与带余式表示法要会灵活运用整数各种表示法解题解决整数问题,余数法、反证法、奇偶性分析、抽屉原理是常用方法7、奇数与偶数:在整数中,能被2整除的数叫做偶数,不能被2整除的数叫做奇数通常把奇数记为2n+1,把偶数记为2n,这里n为整数要注意0也是偶数一切整数分成两大部分:奇数和偶数一个奇数和一个偶数不会相等,这种数的奇偶性是整数最基本的性质奇数与偶数有以下一些重要性质:(1) 奇数加奇数,其和是偶数;奇数加偶数,其和是奇数;偶数加偶数,其和是偶数一般地奇数个奇数的和是奇数,偶数个奇数的和是偶数,任意个偶数的和总是偶数2) 奇数减奇数,其差是偶数;奇数减偶数或偶数减奇数,其差都是奇数;偶数减偶数,其差是偶数3) 奇数乘奇数,其积是奇数;奇数乘偶数,其积是偶数;偶数乘偶数,其积是偶数。

      一般地,N个奇数的积是奇数;几个整数相乘,如果其中有偶数,那么乘积是偶数4) 如果一个偶数被奇数整除,则其商是偶数;如果一个奇数能被一个奇数整除,则其商是奇数对于奇数、偶数的上述四条性质,通常称为奇偶性原理在解决一些有关整数问题时,灵活而巧妙地运用这些性质,再加上正确的推理分析,在解题中会收到较好的效果第二章 整式1、有理数及其运算技巧:在自然数、正分数的基础上引入负数后,数集就扩大到了有理数范围也就是说,整数和分数统称为有理数有理数通常可表示成分数形式,这里m,n都是整数,且m≠0四则运算对有理数是封闭的,即任意两个有理数相加、相减、相乘、相除(除数不为零)结果的和、差、积、商仍为有理数有理数可以作以下两种分类: 正整数 整数 零 负整数 有理数 正有限小数 正分数 正无限循环小数 分数 负分数 负有限小数 负无限循环小数 正整数 正有理数 正分数 零有理数 负有理数 负整数 负分数有理数可以比较大小,任意两个有理数之间都有无穷府哦个有理数,有理数的巧算是一种基本的运算技巧。

      巧算的关键是从整体上观察算式和其中每个数的特点,寻求一定的规律,以简化计算工作量常用方法有:1、分组计算(凑整法、应用运算定律、应用添(去)括号);2、拆项法【;;;】;3、换元计算;4、倒写相加或叫反序求和法;5、错位相减法;6、探索规律法;7、应用幂的性质;7、逆向思维法2、乘法公式:一般常用的乘法公式有:(1);(2);(3);(4);(5);(6);(7)在熟练掌握上述基本公式的基础上,将这些公式变形逆用可得下面的重要公式:(1),或者;(2);(3);(4);(5);(6)3、整式的运算与求值:整式的运算就是将一个整式通过恒等变形变换成另一个与之恒等的式子它包括代数式的化简、求代数式的值等在初中数学竞赛中,代数式的运算与求值是两个基本内容,其方法灵活多变,技巧性强所以进行整式的运算与求值除了掌握一些基本方法外,还应掌握一些典型的技巧和特殊的方法常用方法有:(1)、观察找规律;(2)、整体代入法;(3)、拆添项法;(4)、套用公式法等等4、整式的恒等变形:恒等式分为两类:一般恒等式和条件恒等式例如,不论a、b取任何实数,等式总能成立,称这类等式为一般恒等式又如,当a+b=0时,,这个等式对任意a、b的值并不成立,仅当满足a+b=0时才成立,称这类等式为条件恒等式。

      在初中数学竞赛中,恒等变形是重要的基本内容之一所谓恒等变形是指在字母允许的范围内,把一个代数式变换成另一个与它恒等的代数式恒等变形方法灵活多变,技巧性也很强常用方法和技巧有:(1)配方法;(2)换元法;(3)代入法;(4)差、商比较法(作差法、作商法);(5)消元法;5、有理数的表示法及其应用:有限小数或无限循环小数叫做有理数有理数总可以表示成既约分数(其p、q是没有公因数的整数,且q≠0)例如,=0.5,,……第三章 一次方程与一次不等式一元一次方程的一般表达式:ax=b(a、b均为常数)当a≠0时,方程ax=b有唯一的解x=;当a=0,b=0时,方程ax=b有无数多个解,即方程的解为任何实数;当a=0,b≠0时,方程ax=b无解一元一次不等式有四种类型,即这里a≠0,且a、b均为常数不等式的基本性质:(1)a>b,b>ca>c;(2)a>ba+c>b+c;(3)a>ba-c>b-c;(4)a>b,c>0ac>bc;(5)a>b,c<0ac<bc.比较两数的大小,常用求差法:a-b>0a>b;a-b=0a=ba-b<0a<b1、含字母系数的一次方程:如果方程中的已知数用字母表示,那么这样的方程就叫做含字母系数的方程,或称为含参变量的一次方程。

      在解这种方程时要考虑到字母系数的取值范围,因此应注意对其解的各种情况加以讨论含字母系数的一元一次方程,经过移项、合并同类项等同解变形后,总可以化为ax=b的一般形式再按上述解题格式解题即可2、一次不定方程:如果一个方程中的未知数的个数多于方程的个数,那么称这种方程为不定方程不定方程是数论中的一个重要内容,判断不定方程有无整数解和求正整数。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.