好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

新教材数学人教A版必修第一册课件-4函数的应用.pptx

23页
  • 卖家[上传人]:I***
  • 文档编号:237043961
  • 上传时间:2022-01-09
  • 文档格式:PPTX
  • 文档大小:368.08KB
  • / 23 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第三章 函数的概念与性质3.4 函数的应用(一)课程目标1、能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数、幂函数、分段函数模型解决实际问题;2、感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数、幂函数、分段函数模型在数学和其他学科中的重要性数学学科素养1.数学抽象:总结函数模型;2.逻辑 推理:找出简单实际问题中的函数关系式,根据题干信息写出分段函数;3.数学运算:结合函数图象或其单调性来求最值. ;4.数据分析:二次函数通过对称轴和定义域区间求最优问题;5.数学建模:在具体问题 情境中,运用数形结合思想,将自然语言用数学表达式表示出来 自主预习,回答问题阅读课本93-94页,思考并完成以下问题1.一、二次函数、反比例函数的表达形式分别是什么?2.幂函数、分段函数模型的表达形式是什么?3.解决实际问题的基本过程是?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题知识清单知识清单1常见的数学模型有哪些?(1)一次函数模型:f(x)=kx+b(k,b为常数,k0);(2)反比例函数模型:f(x)= +b(k,b为常数,k0);(3)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a0);(4)幂函数模型:f(x)=axn+b(a,b,n为常数,a0,n1);(5)分段函数模型:这个模型实则是以上两种或多种模型的综合,因此应用也十分广泛.2.解答函数实际应用问题时,一般要分哪四步进行?提示:第一步:分析、联想、转化、抽象;第二步:建立函数模型,把实际应用问题转化为数学问题;第三步:解答数学问题,求得结果;第四步:把数学结果转译成具体问题的结论,做出解答.而这四步中,最为关键的是把第二步处理好.只要把函数模型建立妥当,所有的问题即可在此基础上迎刃而解.答案:C答案:8题型分析 举一反三题型一 一次函数与二次函数模型的应用例1 (1)某厂日生产文具盒的总成本y(元)与日产量x(套)之间的关系为y=6x+30 000,而出厂价格为每套12元,要使该厂不亏本,至少日生产文具盒()A.2 000套B.3 000套 C.4 000套D.5 000套(2)某水果批发商销售每箱进价为40元的苹果,假设每箱售价不得低于50元且不得高于55元.市场调查发现,若每箱以50元的价格销售,平均每天销售90箱.价格每提高1元,平均每天少销售3箱.求平均每天的销售量y(箱)与销售单价x(元/箱)之间的函数关系式;求该批发商平均每天的销售利润w(元)与销售单价x(元/箱)之间的函数关系式;当每箱苹果的售价为多少元时,可以获得最大利润?最大利润是多少?(1)解析:因利润z=12x-(6x+30 000),所以z=6x-30 000,由z0解得x5 000,故至少日生产文具盒5 000套.答案:D(2)解:根据题意,得y=90-3(x-50),化简,得y=-3x+240(50 x55,xN).因为该批发商平均每天的销售利润=平均每天的销售量每箱销售利润.所以w=(x-40)(-3x+240)=-3x2+360 x-9 600(50 x55,xN).因为w=-3x2+360 x-9 600=-3(x-60)2+1 200,所以当x60时,w随x的增大而增大.又50 x55,xN,所以当x=55时,w有最大值,最大值为1 125.所以当每箱苹果的售价为55元时,可以获得最大利润,且最大利润为1 125元.解题方法(一、二次函数模型应用) 1.一次函数模型的应用利用一次函数求最值,常转化为求解不等式ax+b0(或0).解答时,注意系数a的正负,也可以结合函数图象或其单调性来求最值.2.二次函数模型的应用构建二次函数模型解决最优问题时,可以利用配方法、判别式法、换元法、讨论函数的单调性等方法求最值,也可以根据函数图象的对称轴与函数定义域的对应区间之间的位置关系讨论求解,但一定要注意自变量的取值范围.1、商店出售茶壶和茶杯,茶壶定价为每个20元,茶杯每个5元,该商店推出两种优惠办法:买一个茶壶赠一个茶杯;按总价的92%付款.某顾客需购买茶壶4个,茶杯若干个(不少于4个),若购买茶杯x(个),付款y(元),试分别建立两种优惠办法中y与x之间的函数解析式,并讨论该顾客买同样多的茶杯时,两种办法哪一种更优惠?解:由优惠办法可得函数解析式为y1=204+5(x-4)=5x+60(x4,且xN).由优惠办法可得y2=(5x+204)92%=4.6x+73.6(x4,且xN).y1-y2=0.4x-13.6(x4,且xN),令y1-y2=0,得x=34.所以,当购买34个茶杯时,两种优惠办法付款相同;当4x34时,y134时,y1y2,优惠办法更省钱.2、某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t小时内供水总量为120 吨(0t24).从供水开始到第几小时时,蓄水池中的存水量最少?最少存水量是多少吨?若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问:在一天的24小时内,有几小时出现供水紧张现象.解:设t小时后蓄水池中的存水量为y吨,所以y=400+10 x2-120 x=10(x-6)2+40,当x=6,即t=6时,ymin=40,即从供水开始到第6小时时,蓄水池存水量最少,只有40吨.令400+10 x2-120 x80,即x2-12x+320, 题型二 分段函数模型的应用 例2一辆汽车在某段路程中的行驶速度与时间的关系如图所示(1)求图中阴影部分的面积,关说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立汽车行驶这段路程时汽车里程表读数与时间的函数解析式,并作出相应的图象解(2)获得路程关于时间变化的函数解析式:图像如图解题方法(分段函数注意事项)1.分段函数的“段”一定要分得合理,不重不漏.2.分段函数的定义域为对应每一段自变量取值范围的并集.3.分段函数的值域求法:逐段求函数值的范围,最后比较再下结论.跟踪训练二1.某公司生产一种产品,每年投入固定成本0.5万元,此外每生产100件这种产品还需要增加投资0.25万元,经预测可知,市场对这种产品的年需求量为500件,当出售的这种产品的数量为t(单位:百件)时,销售所得的收入约为5t- t2(万元).(1)若该公司的年产量为x(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量x的函数;(2)当这种产品的年产量为多少时,当年所得利润最大?解:(1)当05时,产品只能售出500件.所以,所以当x=4.75(百件)时,f(x)有最大值,f(x)max=10.781 25(万元).当x5时,f(x)12-0.255=10.75(万元).故当年产量为475件时,当年所得利润最大.。

      点击阅读更多内容
      相关文档
      高考语文复习-边塞诗鉴赏课件(共36张PPT).ppt 高考语文复习:论述类文本阅读之论证分析题 课件(共33张PPT).ppt 高考语文复习文学作品阅读之散文的种类+课件(共32张PPT).ppt 高考历史一轮复习 考点过 第10讲 资本主义世界殖民体系的形成(中外历史纲要下).pptx 新高考语文一轮复习(统编版)-语言文字运用之鉴赏语句的表达效果 课件(共43张PPT).ppt 高考语文复习-于小说的特征及命题+课件(共35张PPT).ppt 高考数学一轮总复习第五章平面向量与复数第一讲平面向量的概念及线性运算课件.ppt 高考语文专题复习·现代诗歌阅读+课件(共33张PPT).ppt 高考数学一轮总复习第五章平面向量与复数第五讲复数课件.ppt 高考数学一轮复习 第9章 平面解析几何 第8节 曲线与方程.pptx 高考语文复习:论述类文本阅读之如何做好观点推断题课件(共31张PPT).ppt 高考语文专题复习:诗歌鉴赏之景物形象、意象 课件(共39张PPT).ppt 高考语文复习文学作品阅读:如何快速准确把握高考小说文本+课件(共29张PPT).ppt 高考数学一轮复习 第02讲 空间点、直线、平面之间的位置关系(练)(解析版) 讲练测.docx 高考数学一轮复习 第01讲 平面向量(练)-高考数学一轮复习讲练测(全国通用)(解析版) 讲练测.docx 高考数学一轮复习 第8章 立体几何 第4节 直线、平面平行的判定与性质 讲义.doc 高考数学基础知识综合复习第20讲空间直线平面的垂直 课件(共35张PPT).pptx 高考数学一轮复习 第03讲 直线、平面平行垂直的判定与性质(练)(解析版) 讲练测.docx 考点7-1 平行垂直与动点(文理)-高考数学一轮复习小题多维练(全国通用)(解析版).docx 高考数学基础知识综合复习第10讲三角函数的图象与性质 课件(共20张PPT).pptx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.