好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

《向量法求二面角的大小》教学课件.ppt

45页
  • 卖家[上传人]:Lun****ng
  • 文档编号:115849492
  • 上传时间:2019-11-15
  • 文档格式:PPT
  • 文档大小:2.30MB
  • / 45 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 向量法求二面角的大小 四、教学过程的设计与实施 一、教学背景的分析 二、教学目标的确定 三、教学方法的选择 五、教学效果评价与反思 1 1 教材分析教材分析 一、教学背景的分析 u本节课教学内容选自人教高中数学B版选修2—1第 三章第2.4节“二面角及其度量”的第2课时. u二面角是立体几何的重要概念之一.它是学生在 学习异面直线所成的角,直线与平面所成的角之 后,又重点研究的一种空间角. u课标要求:能用向量方法解决面面夹角的计算问 题,体会向量方法在研究几何问题中的作用. 1 1 教材分析教材分析 一、教学背景的分析 u利用向量方法求解立体几何问题是将逻辑推理转化 为向量的代数运算. 三步曲:空间向量表示几何元素→利用向量运算研 究几何元素间的关系→把运算结果转化成相应的几 何结论. u用到数形结合、类比转化等数学思想和方法,有助 于提高学生的思维能力. 2 2 学情分析学情分析 一、教学背景的分析 已学习:二面角及二面角的平面角的概念 会:建立空间直角坐标系 进行向量坐标运算 求平面的法向量 已掌握:用向量求解线线角、线面角的方法 二、教学目标的确定 1 通过类比异面直线所 成的角、直线与平面 所成角的解决方法, 得到用向量求二面角 大小的方法,并能用 之解决有关问题,体 会向量方法在研究几 何问题中的作用. 3 通过经历向量法求二 面角大小的推导过程 ,培养大胆探索精神 ,提高学习立体几何 的兴趣. 2 在探究用向量法求二 面角大小的过程中, 体会数形结合、类比 转化的数学思想,进 一步提高空间想象能 力、分析问题和解决 问题的能力. 重点和难点 重点:用法向量夹角求二面角的方 法的探究及应用 难点:二面角与两个半平面的法向 量夹角的关系 教学的重点和难点教学的重点和难点 二、教学目标的确定 多媒体辅助 三、教学方法的选择 教师启发引导 学生自主探究 1 1 教学方法教学方法 2 2 教学手段教学手段 四、教学过程的设计与实施 2 探究方法 1 温故知新 3 实践操作 4 归纳总结 1 温故知新 四、教学过程的设计与实施 l A B O 如何度量二面角α—l—β的大小 1 1 温故知新 1 1 温故知新 四、教学过程的设计与实施 异面直线线所成的角 四、教学过程的设计与实施 1 1 温故知新 直线线与平面所成的角 直线线的方向向量为为 ,平面的法向量为为 通过复习二面角平面角的知识,类比线线角、线 面角的解决方法,自然引出用向量探究二面角的 大小. 四、教学过程的设计与实施 1 1 温故知新 设计意图 四、教学过程的设计与实施 2探究方法 1温故知新 3 实践操作 4 归纳总结 2探究方法 四、教学过程的设计与实施 2 2 探究方法 l A O B 问题1: 二面角的平面角 能否转化成向量的夹角? 四、教学过程的设计与实施 2 2 探究方法 从平面角出发,引导学生发现二面角的求解可由 向量的夹角来确定,从而调动学生探究这一问题 的积极性. 四、教学过程的设计与实施 2 2 探究方法 设计意图 四、教学过程的设计与实施 2 2 探究方法 问题2: 求直线和平面所成的角可转化成直线的方向向量与 平面的法向量的夹角,那么二面角的大小与两个半 平面的法向量有没有关系? l 2 2 探究方法 四、教学过程的设计与实施 思考:法向量的夹角与二面角平面角的关系 四、教学过程的设计与实施 2 2 探究方法 四、教学过程的设计与实施 2 2 探究方法 四、教学过程的设计与实施 根据教师师引导导,由学生发现该发现该 二面角的求解可由向量的夹夹角来确定,调动调动 学生探究这这一问题问题 的主动动性和积积极性.根据教师师引导导,由学生发现该发现该 二面角的求解可由向量的夹夹角来确定,调动调动 学生探究这这一问题问题 的主动动性和积积极性. 通过教师引导和学生的交流讨论,培养学生的空 间想象能力、逻辑思维能力和乐于探索的精神; 通过实物教具、板书画图、课件演示,帮助学生 理解法向量夹角与二面角大小的关系. 四、教学过程的设计与实施 2 2 探究方法 设计意图 2 2 探究方法 四、教学过程的设计与实施 问题3: 法向量的夹角与二面角的大小什么时候相等,什么 时候互补? 再次演示课件 2 2 探究方法 四、教学过程的设计与实施 进一步探究法向量的夹角与二面角大小的关系, 结合规律加深学生对这一难点内容的理解. 四、教学过程的设计与实施 2 2 探究方法 设计意图 2探究方法 1 温故知新 3 实践操作 4 归纳总结 3 实践操作 四、教学过程的设计与实施 四、教学过程的设计与实施 3 3 实践操作 已知ABCD 是直角梯形,∠DAB=∠ABC=90°, SA⊥平面ABCD,SA=AB=BC=1, , 求平面SAB与SCD 所成二面角的余弦值. 本题的特点是图中没有出现两个平面的交线,不 能直接利用二面角的平面角或者垂直于棱的向量 的夹角解决,利用法向量的夹角解决体现了向量 求解立体几何问题的优越性. 四、教学过程的设计与实施 3 3 实践操作 设计意图 四、教学过程的设计与实施 3 3 实践操作 已知ABCD 是直角梯形,∠DAB=∠ABC=90°, SA⊥平面ABCD,SA=AB=BC=1, , 求平面SAB与SCD 所成二面角的余弦值. 3 3 实践操作 四、教学过程的设计与实施 3 3 实践操作 四、教学过程的设计与实施 通过对无棱二面角问题的解决,使学生经历从建立 坐标系到探究法向量的坐标及角的取值的过程,较 好地掌握如何利用法向量的夹角求二面角大小的方 法. 四、教学过程的设计与实施 3 3 实践操作 设计意图 3 3 实践操作 四、教学过程的设计与实施 总结出利用法向量求二面角大小的一般步骤: 1)建立坐标系,写出点与向量的坐标; 2)求出平面的法向量,进行向量运算求出法向量的 夹角; 3)通过图形特征或已知要求,确定二面角是锐角或 钝角,得出问题的结果. 明确向量法的解题步骤,培养学生概括、总结的 能力和意识. 四、教学过程的设计与实施 3 3 实践操作 设计意图 3 3 实践操作 四、教学过程的设计与实施 正方体ABCD—A1B1C1D1的棱长为2,点Q是BC 的中点,求二面角A—DQ—A1的余弦值. 巩固练习: 2探究方法 1 温故知新 3 实践操作 4归纳总结4归纳总结 四、教学过程的设计与实施 4 4 归纳总结 数形结合 类比转化 Ø 两个思想 四、教学过程的设计与实施 Ø 一个步骤 Ø 两种方法 半平面内分别垂直于棱的向量的夹角 两个平面的法向量的夹角求解 用法向量求二面角大小的步骤 引导学生对所学的数学知识、思想方法进行小结, 有利于学生对已有的知识结构加深理解。

      四、教学过程的设计与实施 4 4 归纳总结 设计意图 4 4 归纳总结 课后作业:课后作业: 1、如图图所示,正方体ABCD-A1B1C1D1棱长为长为 1 , 试试用多种方法求二面角A1-BD-C1的余弦值值. 2、P111练习A第3题,练习B第2题 四、教学过程的设计与实施 四、教学过程的设计与实施 五、教学效果的评价与反思 学习效果评价设计 项目A(优秀)B(良好)C(合格) 个人 评价 同学 评价 教师 评价 旧知识掌握情况牢固比较牢固一般 课前预习情况自己主动完成依照同学才完成不能完成 独立思考积极程度积极较积极一般 交流讨论情况有交流讨论有交流没有交流 参与学习的积极性很高比较高一般 本节课的掌握情况好较好不好 课后作业完成情况独立完成与同学合作完成不能完成 五、教学效果的评价与反思 1、以课标为中心,加强知识形成过程的教学 2、几何画板演示、实物教具和传统板书教学有效结合 3、在教师的引导下,学生的主体性得到了充分体现 4、注重提高学生的思维能力和数学思想方法的渗透 教学反思 教学反思 五、教学效果分析 。

      点击阅读更多内容
      相关文档
      2025年中考数学总复习二次函数的图象与性质.pdf 2025年中考数学总复习一次方程(组)及其应用-思维导图.pdf 2025年中考数学总复习一元一次不等式(组)及其应用-思维导图.pdf 2025年中考数学总复习二次根式-思维导图.pdf 2025年中考数学总复习分式-思维导图.pdf 人教新版生物学八年级上册知识点.docx 2025年中考数学总复习习题:7.2 投影与视图.docx 2025年中考数学总复习习题:4.3 全等三角形.docx 2025年中考数学总复习习题:2.2 分式方程.docx 2025年中考数学总复习微专题 第二章 结合传统数学文化考查一次方程(组)的实际应用.docx 2025年中考数学总复习课件:考点知识梳理 2.2 分式方程.pptx 2025年中考数学总复习考点知识梳理 8.1 统计.docx 2025年中考数学总复习考点知识梳理 5.2 第3课时 正方形.docx 2025年中考数学总复习习题:6.3 与圆有关的计算.docx 2025年中考数学总复习习题:1.4 二次根式.docx 四年级下册数学课件-平均数3-北京版 (共15张PPT).ppt 四年级下册数学课件-鸡兔同笼人教新课标(共20 张ppt).pptx 四年级下册数学课件-第三单元 三位数乘两位数 第2课时常见的数量关系|苏教版|苏教版 (共9张PPT).ppt 四年级下册数学课件-第六单元 运算律 第8课时 相遇问题|苏教版 (共8张PPT).ppt 2025年中考数学总复习考点知识梳理 3.4 第2课时 二次函数性质的综合应用.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.