好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2019高中数学 第一章 三角函数 1.8 函数y=Asin(ωx+φ)的图像与性质课件 北师大版必修4.ppt

41页
  • 卖家[上传人]:博****1
  • 文档编号:569709153
  • 上传时间:2024-07-30
  • 文档格式:PPT
  • 文档大小:2.52MB
  • / 41 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • §8 8 函数y=Asin(ωx+φ)的图像与性质 一二三四一、三角函数的图像变换1.上、下伸缩变换函数y=Asin x的图像,可以看作是把函数y=sin x图像上所有的点的纵坐标伸长(当A>1时)或缩短(当00时)或向右(当φ<0时)平行移动|φ|个单位长度而得到(可简记为左“+”右“-”),即y=sin xy=sin(x+φ). 一二三四3.左、右伸缩变换函数y=sin ωx的图像,可以看作是把y=sin x图像上所有的点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的 倍(纵坐标不变)而得到,即y=sin x y=sin ωx.4.上、下平移变换函数y=sin(ωx+φ)+b的图像,可以看作是把y=sin(ωx+φ)上所有的点向上(当b>0时)或向下(当b<0时)平移|b|个单位长度而得到(可简记为上“+”下“-”),即y=sin(ωx+φ) y=sin(ωx+φ)+b. 一二三四(3)把函数y=sin 3x图像上所有点的   坐标变为原来的   倍,即可得到函数y=sin x的图像. (4)将函数y=4sin x-1的图像向下平移2个单位,得到函数        的图像.  一二三四二、A,ω,φ对函数y=Asin(ωx+φ)的影响1.在函数y=Asin x(A>0)中,A决定了函数的值域以及函数的最大值和最小值,通常称A为振幅.2.在函数y=sin(x+φ)中,φ决定了x=0时的函数值,通常称φ为初相,x+φ为相位.A.4π,-2B.4π,2C.π,2D.π,-2答案:B 一二三四三、函数y=Asin(ωx+φ)+b(A>0,ω>0)的图像1.用五点法作函数y=Asin(ωx+φ)的图像.列表如下: 一二三四其中P1,P3,P5均为零点(图像与x轴的交点),P2是最大值点,P4是最小值点,分别称为第一、二、三、四、五个关键点.(3)描点,作出函数在一个周期内的图像,再向左、右无限扩展,得到y=Asin(ωx+φ)(A>0,ω>0,x∈R)的图像. 一二三四2.由函数y=sin x的图像得到函数y=Asin(ωx+φ)+b(A>0,ω>0)的图像.方法一(先平移后伸缩):(1)作出y=sin x的图像;(2)把正弦曲线向左(或向右)平移|φ|个单位长度,得到函数y=sin(x+φ)的图像;(3)将曲线上各点的横坐标变为原来的 倍,纵坐标不变,得到函数y=sin(ωx+φ)的图像;(4)将曲线上各点的纵坐标变为原来的A倍,横坐标不变,得到函数y=Asin(ωx+φ)的图像;(5)将曲线上各点向上(或向下)平移|b|个单位长度,得到函数y=Asin(ωx+φ)+b的图像. 一二三四方法二(先伸缩后平移):(1)作出y=sin x的图像;(2)把正弦曲线上各点的横坐标变为原来的 倍,纵坐标不变,得到函数y=sin ωx的图像;(3)将曲线上各点向左(或向右)平移 个单位长度,得到函数y=sin(ωx+φ)的图像;(4)将曲线上各点的纵坐标变为原来的A倍,横坐标不变,得到函数y=Asin(ωx+φ)的图像;(5)将曲线上各点向上(或向下)平移|b|个单位长度,得到函数y=Asin(ωx+φ)+b的图像. 一二三四答案:C 一二三四四、函数y=Asin(ωx+φ)的性质1.定义域:R.2.值域:[-|A|,|A|]. 一二三四 一二三四思考辨析判断下列说法是否正确,正确的在后面的括号内画“√”,错误的画“×”.(3)对于正弦型函数y=Asin(ωx+φ)+B(其中A>0,ω>0),x∈R来说一定有ymax=A+B,ymin=-A+B. (  )答案:(1)× (2)× (3)√ 探究一探究二探究三探究四易错辨析用用“五点法五点法”作函数作函数y=Asin(ωx+φ)的图像 思路分析:按“五点法”的作图步骤进行. 解:列表. 探究一探究二探究三探究四易错辨析描点、连线成图(如图).利用函数的周期性,可以把上述简图向左、右扩展,就得到y=2sin ,x∈R的图像. 探究一探究二探究三探究四易错辨析反思感悟1.用“五点法”画函数y=Asin(ωx+φ)(x∈R)的简图,先作变量代换,令X=ωx+φ,再由X取 来确定相应的x值,最后根据x,y的值描点、连线并作出函数的图像.2.作给定区间上y=Asin(ωx+φ)的图像时,若x∈[m,n],应先求出(ωx+φ)的相应范围,在求出的范围内确定其关键点,再确定x,y的值,描点、连线并作出函数图像. 探究一探究二探究三探究四易错辨析变式训练变式训练1用“五点法”作函数y=2sin +3的图像,并写出函数的定义域、值域、周期、频率、初相、最值、单调区间.解:①列表.②描点、连线作出一周期的函数图像. 探究一探究二探究三探究四易错辨析 探究一探究二探究三探究四易错辨析三角函数的三角函数的图像像变换【例2】 由函数y=sin x的图像经过怎样的变换,可以得到函数 y= +1的图像.思路分析:本题考查三角函数的图像变换问题,可以从先“平移变换”或先“伸缩变换”两种不同变换顺序的角度去考虑,得到答案. 探究一探究二探究三探究四易错辨析解:(方法一) 探究一探究二探究三探究四易错辨析 探究一探究二探究三探究四易错辨析反思感悟三角函数图像的变换方法1.对函数y=Asin(ωx+φ)+b(A>0,ω>0,φ≠0,b≠0),其图像的基本变换有:(1)振幅变换(纵向伸缩变换):是由A的变化引起的.当A>1时伸长;当A<1时缩短.(2)周期变换(横向伸缩变换):是由ω的变化引起的.当ω>1时缩短;当ω<1时伸长.(3)相位变换(横向平移变换):是由φ的变化引起的.当φ>0时左移;当φ<0时右移.(4)上下平移(纵向平移变换):是由b的变化引起的.当b>0时上移;当b<0时下移.可以使用“先伸缩后平移”或“先平移后伸缩”两种方法来进行变换.2.若相应的变换函数名不同时,先利用诱导公式将函数名化相同,再利用相应的变换得到结论. 探究一探究二探究三探究四易错辨析变式训练变式训练2(1)把函数y=2sin 的图像经过变换,得到y=-2sin 2x的图像,这个变换是(  )(2)已知函数y=f(x)的图像上的每一点的纵坐标扩大到原来的4倍,横坐标扩大到原来的2倍,然后把所得的图像沿x轴向左平移 个单位,这样得到的图像和y=2sin x的图像相同,则函数y=f(x)的解析式为 . 答案:(1)A (2)f(x)=- cos 2x 探究一探究二探究三探究四易错辨析根据函数的根据函数的图像求函数的解析式像求函数的解析式【例3】 如图是函数y=Asin(ωx+φ)(A>0,ω>0,φ>0)在一个周期内的图像,试确定A,ω,φ的值.思路分析:方法一可以用五点作图法原理先确定A,再确定ω,最后确定φ;方法二也可以用关键点代入的方法求解. 探究一探究二探究三探究四易错辨析解法一(起点法)由图像可知振幅A=3, 根据五点法作图原理(以上两点可作为五点法作图中的第三点和第五点), 探究一探究二探究三探究四易错辨析反思感悟根据三角函数图像求三角函数解析式的方法1.如果从图像可确定振幅和周期,那么可直接确定函数解析式y=Asin(ωx+φ)中的参数A和ω,再选取“第一零点”(即五点作图法中的第一个点)的数据代入“ωx+φ=0”(要注意正确判断哪一点是“第一零点”)求得φ.2.通过若干特殊点代入函数解析式,可以求得相关待定系数A,ω,φ.依据五点列表法原理,点的序号与所列式子的关系如下:“第一点”为ωx+φ=0;“第二点”为ωx+φ= ;“第三点”为ωx+φ=π;“第四点”为ωx+φ= ;“第五点”为ωx+φ=2π. 探究一探究二探究三探究四易错辨析变式训练变式训练3已知函数y=Asin(ωx+φ) 在一个周期内的部分函数图像如图所示.求此函数的解析式. 探究一探究二探究三探究四易错辨析研究函数研究函数y=Asin(ωx+φ)的性质的性质【例4】 已知函数y=Asin(3x+φ)(A>0,x∈R,0<φ<π)在x= 时取得最大值4.(1)求f(x)的最小正周期;(2)求f(x)的单调区间.思路分析:(1)可直接套公式求解;(2)应先求出f(x)的解析式,再用整体换元法求单调区间. 探究一探究二探究三探究四易错辨析 探究一探究二探究三探究四易错辨析反思感悟研究函数y=Asin(ωx+φ)的性质,主要通过整体换元的思想,将(ωx+φ)视为一个整体来研究,但首先要掌握和熟记y=sin x的性质,诸如定义域、值域、周期、单调区间等. 探究一探究二探究三探究四易错辨析变式训练变式训练4已知函数f(x)=2 sin (ω>0)的最小正周期是π.(1)求ω; 探究一探究二探究三探究四易错辨析因图像变换方向把握不准而出错【典例】 将函数y=sin x的图像上所有的点向右平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是(  )错解A或B或D 答案:C 探究一探究二探究三探究四易错辨析纠错心得1.关于正弦型函数图像的平移变换与周期变换问题一定要搞清楚始点与终点目标,否则易弄错方向,还要注意函数类型是否统一. 12345答案:A 12345答案:A 123453.已知函数y=Asin(ωx+φ)+B的一部分图像如图所示,若A>0,ω>0,|φ|< ,则(  )答案:C 12345 12345 12345 12345 。

      点击阅读更多内容
      相关文档
      2024-2025学年广东省大湾区高二下学期期末联考地理试题及答案.pdf 2024-2025学年广东省八校联盟高二下学期质量监测物理试题及答案.pdf 2024-2025学年广东省佛山市高二下学期期末考英语试题含答案.pdf 2024-2025学年广东省大湾区高二下学期期末联考历史试题及答案.pdf 2024-2025学年广东省佛山市高二下学期期末考政治试题及答案.pdf 2024-2025学年广东省八校联盟高二下学期质量监测历史试题及答案.pdf 2024-2025学年广东省大湾区高二下学期期末联考政治试题及答案.pdf 2024-2025学年广东省大湾区高二下学期期末联考英语试题及答案.pdf 2024-2025学年广东省佛山市高二下学期期末考地理试题及答案.pdf 2024-2025学年广东省大湾区高二下学期期末联考语文试题及答案.pdf 2024-2025学年广东省佛山市高二下学期期末考语文试题及答案.pdf 2025届广东省肇庆市高三二模化学试题及答案.pdf 2025届广东省肇庆市高三二模历史试题及答案.pdf 2025届广东省广州市高三一模考试数学试题及答案.pdf 2025届广东省广州市高三一模考试英语试题及答案.pdf 2025届广东省深圳高级中学高中园高三下学期一模英语试题及答案.pdf 2025届广东省汕头市高三下学期二模考试英语试题及答案.pdf 2025届广东省深圳高级中学高中园高三下学期一模数学试题及答案.pdf 2025届广东省惠州市高三下学期4月模拟考试政治试题及答案.pdf 2025届广东省肇庆市高三二模地理试题及答案.pdf
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.