
陕西省咸阳市2024届数学八年级下册期末质量检测模拟试题含解析.doc
20页陕西省咸阳市2024届数学八年级下册期末质量检测模拟试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题(每小题3分,共30分)1.使有意义的x的取值范围是( )A.x≤3 B.x<3 C.x≥3 D.x>32.如图,在平面直角坐标系中,点A、B的坐标分别是(4,0)、(0,3),点O'在直线y=2x(x≥0)上,将△AOB沿射线OO'方向平移后得到△A'O'B’.若点O'的横坐标为2,则点A'的坐标为( )A.(4,4) B.(5,4) C.(6,4) D.(7,4)3.如图,一次函数和(,)在同一坐标系的图像,则的解中( )A. B. C. D.4.如图,在中,,点在上,,若,,则的长是( )A. B. C. D.5.下列植物叶子的图案中既是轴对称,又是中心对称图形的是( )A. B. C.. D.6.如图所示,由已知条件推出结论错误的是( )A.由∠1=∠5,可以推出AB∥CD B.由AD∥BC,可以推出∠4=∠8C.由∠2=∠6,可以推出AD∥BC D.由AD∥BC,可以推出∠3=∠77.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,首先应假设这个直角三角形中( )A.两个锐角都大于45° B.两个锐角都小于45C.两个锐角都不大于45° D.两个锐角都等于45°8.点A(-2,5)在反比例函数的图像上,则该函数图像位于( )A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限9.下列交通标志既是中心对称图形又是轴对称图形的是( )A. B. C. D.10.下列各组数中,能构成直角三角形的是( )A.4,5,6 B.1,1, C.6,8,11 D.5,12,23二、填空题(每小题3分,共24分)11.函数中自变量的取值范围是_________________.12.已知函数y=(m﹣1)x|m|+3是一次函数,则m=_____.13.若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为______cm.14.若点和点都在一次函数的图象上,则___选择“>”、“<”、“=”填空).15.若一次函数的图像与直线平行,且经过点,则这个一次函数的表达式为______.16.已知关于的方程的一个根为,则实数的值为( )A. B. C. D.17.分解因时:=__________18.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若BC=BD,则∠A=_____度.三、解答题(共66分)19.(10分)如图,已知□ABCD中,点E、F分别在AD、BC上,且EF垂直平分对角线AC,垂足为O,求证:四边形AECF是菱形。
20.(6分)如图1,在正方形中,是对角线,点在上,是等腰直角三角形,且,点是的中点,连结与.(1)求证:.(2)求证:.(3)如图2,若等腰直角三角形绕点按顺时针旋转,其他条件不变,请判断的形状,并证明你的结论.21.(6分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并根据统计结果绘制成如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,样本容量为 ;(2)补全条形统计图;(3)“乘车”所对应的扇形圆心角为 °;(4)若该学校共有2000名学生,试估计该学校学生中选择“步行”方式的人数.22.(8分)某边防局接到情报,近海处有一可疑船只正向公海方向行驶,边防局迅速派出快艇追赶(如图1).图2中、分别表示两船相对于海岸的距离(海里)与追赶时间(分)之间的关系.(1)求、的函数解析式;(2)当逃到离海岸12海里的公海时,将无法对其进行检查.照此速度,能否在逃入公海前将其拦截?若能,请求出此时离海岸的距离;若不能,请说明理由. 23.(8分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.24.(8分)如图,直线经过矩形的对角线的中点,分别与矩形的两边相交于点、.(1)求证:;(2)若,则四边形是______形,并说明理由;(3)在(2)的条件下,若,,求的面积.25.(10分)如图,在四边形ABCD中,AB∥CD,AC垂直平分BD,交BD于点F,延长DC到点E,使得CE=DC,连接BE.(1)求证:四边形ABCD是菱形.(2)填空:①当∠ADC= °时,四边形ACEB为菱形;②当∠ADC=90°,BE=4时,则DE= 26.(10分)随着改革开放进程的推进,改变的不仅仅是人们的购物模式,就连支付方式也在时代的浪潮中发生着天翻地覆的改变,除了现金、银行卡支付以外,还有、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.参考答案一、选择题(每小题3分,共30分)1、C【解析】分析:先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.详解:∵式子有意义,∴x-1≥0,解得x≥1.故选C.点睛:本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.2、C【解析】利用一次函数图象上点的坐标特征可得出点O′的坐标,再利用平移的性质结合点A的坐标可得出点A′的坐标,即可解答.【详解】解:当x=2时,y=2x=4,∴点O′的坐标为(2,4).∵点A的坐标为(4,0),∴点A′的坐标为(4+2,0+4),即(6,4).故选:C.【点睛】本题考查了一次函数图象上点的坐标特征以及坐标与图形的变化-平移,利用一次函数图象上点的坐标特征求出点O′的坐标是解题的关键.3、A【解析】方程组的解就是一次函数y1=ax+b和y2=-bx+a(a≠0,b≠0)图象的交点,根据交点所在象限确定m、n的取值范围.【详解】解:方程组的解就是一次函数y1=ax+b和y2=-bx+a(a≠0,b≠0)图象的交点,∵两函数图象交点在第一象限,∴m>0,n>0,故选:A.【点睛】此题主要考查了一次函数与二元一次方程组的解,关键是掌握两函数图象的交点就是两函数解析式组成的方程组的解.4、C【解析】根据勾股定理求出斜边长,根据直角三角形的性质解答.【详解】在Rt△ABC中,∠ACB=90°,∴AB==5,∵∠ACB=90°,AD=BD,∴CD=AB=,故选C.【点睛】本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.5、D【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A. 是轴对称图形,不是中心对称图形。
故选项错误;B. 是轴对称图形,不是中心对称图形故选项错误;C. 不是轴对称图形,也不是中心对称图形故选项错误;D. 是轴对称图形,也是中心对称图形故选项正确故选D.【点睛】此题考查中心对称图形,轴对称图形,解题关键在于掌握其概念6、B【解析】根据平行线的判定以及性质,对各选项分析判断即可利用排除法求解.【详解】解:A、由∠1=∠5,可以推出AB∥CD,故本选项正确;B、由AB∥CD,可以推出∠4=∠8,故本选项错误;C、由∠2=∠6,可以推出AD∥BC,故本选项正确;D、由AD∥BC,可以推出∠3=∠7,故本选项正确.故选B.【点睛】本题考查了平行线的判定与性质,找准构成内错角的截线与被截线是解题的关键.7、A【解析】用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.【详解】用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设两个锐角都大于45°.故选:A.【点睛】本题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.8、D【解析】根据反比例函数上点的坐标特点可得k=-10,再根据反比例函数的性质可得函数图像位于第二、四象限.【详解】∵反比例函数的图像经过点(-2,5),∴k=(-2)×5=-10,∵-10<0,∴该函数位于第二、四象限,故选:D.【点睛】本题考查反比例函数上的点坐标的特点,反比例函数上的点横、纵坐标之积等于k;本题也考查了反比例函数的性质,对于反比例函数,当k大于0时,图像位于第一、三象限,当k小于0,图像位于第二、四象限.9、C【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误;故选C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、B【解析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.【详解】解:A、,故不是直角三角形,错误; B、 ,故是直角三角形,正确; C、 故不是直角三角形,错误; D、故不是直角三角形,错误. 故选:B.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.二、填空题(每小题3分,共24分)11、且【解析】根据分式和二次根式有意义的条件列不等式组求解即可.【详解】根据分式和二次根式有意义的条件可得解得且故答案为:且.【点睛】本题考查了函数自变量取值范围的问题,掌握分式和二次根式有意义的条件是解题的关键.12、﹣1【解析】因为y=(m﹣1)x|m|+3是一次函数,所以|m|=1,m﹣1≠0,解答即可.【详解】解:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.则得到|m|=1,m=±1,∵m﹣1≠0,∴m≠1,m=﹣1.故答案是:m=﹣1.【点睛】考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.k≠0是考查的重点.13、1【解析】根据等腰三角形的性质先求出BD,然后在Rt△AB。