学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………山东省寿光市实验中学2024年数学九上开学检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)环保部门根据我市一周的检测数据列出下表.这组数据的中位数是A. B. C. D.2、(4分)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是( )A. B. C. D.3、(4分)用反证法证明命题“四边形中至少有一个角不小于直角”时应假设( )A.没有一个角大于直角 B.至多有一个角不小于直角C.每一个内角都为锐角 D.至少有一个角大于直角4、(4分)若分式的值为5,则x、y扩大2倍后,这个分式的值为( )A. B.5 C.10 D.255、(4分)如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是( )A.∠DAC=∠ABC B.AC是∠BCD的平分线 C.AC2=BC•CD D.6、(4分)若一个多边形的内角和为外角和的3倍,则这个多边形为 ( )A.八边形 B.九边形 C.十边形 D.十二边形7、(4分)在下列长度的各组线段中,能构成直角三角形的是( )A.3,5,9 B.4,6,8 C.13,14,15 D.8,15,178、(4分)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,列方程组正确的是( )A. B.C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)要使分式有意义,则应满足的条件是10、(4分)如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2, AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.11、(4分)如图,□的顶点的坐标为,在第一象限反比例函数和的图象分别经过两点,延长交轴于点. 设是反比例函数图象上的动点,若的面积是面积的2倍,的面积等于,则的值为________。
12、(4分)若代数式在实数范围内有意义,则x的取值范围是_______.13、(4分)张老师公布班上6名同学的数学竞赛成绩时,有意公布了5个人的得分:78,92,61,85,75,又公布了6个人的平均分:80,还有一个未公布,这个未公布的得分是_____.三、解答题(本大题共5个小题,共48分)14、(12分)已知:如图,正方形中,是边上一点,,,垂足分别是点、.(1)求证:;(2)连接,若,,求的长.15、(8分)先化简再求值:,其中m是方程的解.16、(8分)如图,在ABCD中,点E,F分别在BC,AD上,且BE=FD,求证:四边形AECF是平行四边形.17、(10分)如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.18、(10分)如图,已知点A、B、C、D的坐标分别为(-2,2),(一2,1),(3,1),(3,2),线段AD、AB、BC组成的图形记作G,点P沿D-A-B-C移动,设点P移动的距离为a,直线l:y=-x+b过点P,且在点P移动过程中,直线l随点P移动而移动,若直线l过点C,求(1)直线l的解析式;(2)求a的值.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)直线过第_________象限,且随的增大而_________.20、(4分)在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩_____.21、(4分)如图,直线y=kx+b与直线y=2x交于点P(1,m),则不等式2x”或“<”)23、(4分)若有意义,则x 的取值范围是 .二、解答题(本大题共3个小题,共30分)24、(8分)(问题原型)如图,在中,对角线的垂直平分线交于点,交于点,交于点.求证:四边形是菱形.(小海的证法)证明:是的垂直平分线,,(第一步),(第二步).(第三步)四边形是平行四边形.(第四步)四边形是菱形. (第五步)(老师评析)小海利用对角线互相平分证明了四边形是平行四边形,再利用对角线互相垂直证明它是菱形,可惜有一步错了.(挑错改错)(1)小海的证明过程在第________步上开始出现了错误.(2)请你根据小海的证题思路写出此题的正确解答过程,25、(10分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:四边形PBQD是平行四边形;(2)若AD=8cm,AB=6cm,P从点A出发,以1cm/秒的速度向D运动(不与D重合),设点P运动时间为t秒.①请用t表示PD的长;②求t为何值时,四边形PBQD是菱形.26、(12分)如图,矩形纸片中,已知,折叠纸片使边落在对角线上,点落在点处,折痕为,且,求线段的长.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.【详解】根据中位数的概念,可知这组数据的中位数为:21故答案选:C本题考查中位数的概念,将一组数据从小到大或从大到小重新排列后,最中间的那个数或者最中间两个数的平均数叫做这组数据中位数,如果中位数的概念掌握不好,不把数据按照要求重新排列,就会出错.2、B【解析】观察所给程序的运算过程,根据前两次运算结果小于或等于95、第三次运算结果大于95,列出关于x的不等式组;先求出不等式组中三个不等式的解集,再取三个不等式的解集的公共部分,即为不等式组的解集.【详解】由题意可得 ,解不等式①得,x≤47,解不等式②得,x≤1,解不等式③得,x>11,故不等式组的解集为11<x≤1.故选B.此题考查一元一次不等式的应用,关键是根据“操作进行了三次才停止”列出满足题意的不等式组;3、C【解析】至少有一个角不小于90°的反面是每个内角都为锐角,据此即可假设.【详解】解:反证法的第一步先假设结论不成立,即四边形的每个内角都为锐角.故选C.本题结合角的比较考查反证法,解答此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.4、B【解析】用、分别代替原式中的、,再根据分式的基本性质进行化简,观察分式的变化即可.【详解】根据题意,得新的分式为.故选:.此题考查了分式的基本性质.5、C【解析】结合图形,逐项进行分析即可.【详解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;②,故选C.本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.6、C【解析】设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:180(n-2)=360×4,解方程可得.【详解】解:设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:180(n-2)=360×4n-2=8解得:n=10所以,这是个十边形故选C.本题考核知识点,多边形的内角和外角.解题关键点,熟记多边形内角和计算公式.7、D【解析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、因为32+52≠92,所以不能组成直角三角形;B、因为42+62≠82,所以不能组成直角三角形;C、因为132+142≠152,所以不能组成直角三角形;D、因为82+152=172,所以能组成直角三角形.故选:D.此题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8、D【解析】试题分析:要列方程(组),首先要根据题意找出存在的等量关系.本题等量关系为:①男女生共20人;②男女生共植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.据此列出方程组:.故选D.考点:由实际问题抽象出二元一次方程组.二、填空题(本大题共5个小题,每小题4分,共20分)9、≠1【解析】根据题意得:-1≠0,即≠1.10、或﹣.【解析】试题分析:当点F在OB上时,设EF交CD于点P,可求点P的坐标为(,1).则AF+AD+DP=3+x, CP+BC+BF=3﹣x,由题意可得:3+x=2(3﹣x),解得:x=.由对称性可求当点F在OA上时,x=﹣,故满足题意的x的值为或﹣.故答案是或﹣.考点:动点问题.11、6.1【解析】根据题意求得CD=BC=2,即可求得OD=,由△POA的面积是△PCD面积的2倍,得出xP=3,根据△POD的面积等于2k﹣8,列出关于k的方程,解方程即可求得.【详解】∵▱OABC的顶点A的坐标为(2,0),∴BD∥x轴,OA=BC=2,∵反比例函数和的图象分别经过C,B两点,∴DC•OD=k,BD•OD=2k,∴BD=2CD,∴CD=BC=2,BD=1,∴C(2,),B(1,),∴OD=,∵△POA的面积是△PCD面积的2倍,∴yP=,∴xP==3,∵△POD的面积等于2k﹣8,∴OD•xP=2k﹣8,即×3=2k﹣8,解得k=6.1,故答案为6.1.本题考查反比例函数系数k的几何意义,平行四边形的性质,反比例图象上点的坐标特征,求得P的横坐标是解题的关键.12、【解析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:∵在实数范围内有意义,∴x-1≥2,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2.13、1.【解析】首先设这个未公布的得分是x,根据算术平均数公式可得关于x的方程,解方程即可求得答案.【详解】设这个未公布的得分是x,则:,。