好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2024年高考数学试卷(上海)(秋考)【含答案、解析】.docx

17页
  • 卖家[上传人]:to****33
  • 文档编号:614033613
  • 上传时间:2025-08-27
  • 文档格式:DOCX
  • 文档大小:479.11KB
  • / 17 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2024年上海市高考数学试卷一、填空题(本大题共有12题,满分54分.其中第1-6题每题4分,第7-12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1. 设全集,集合,则______.2. 已知则______.3. 已知则不等式的解集为______.4. 已知,,且是奇函数,则______.5. 已知,且,则的值为______.6. 在的二项展开式中,若各项系数和为32,则项的系数为______.7. 已知抛物线上有一点到准线的距离为9,那么点到轴的距离为______.8. 某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是______.9. 已知虚数,其实部1,且,则实数为______.10. 设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值______.11. 已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则______(精确到0.1度)12. 无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是______.二、选择题(本大题共有4题,满分18分,其中第13-14题每题满分4分,第15-16题每题满分5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得满分,否则一律得零分.13. 已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是( )A. 气候温度高,海水表层温度就高B. 气候温度高,海水表层温度就低C. 随着气候温度由低到高,海水表层温度呈上升趋势D. 随着气候温度由低到高,海水表层温度呈下降趋势14. 下列函数的最小正周期是的是( )A. B. C. D. 15. 定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,使得.已知,则的充分条件是( )A. B. C. D. 16. 已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是( )A. 存在是偶函数 B. 存在在处取最大值C. 存在是严格增函数 D. 存在在处取到极小值三、解答题(本大题共有5题,满分78分)解下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17. 如图为正四棱锥为底面的中心.(1)若,求绕旋转一周形成几何体的体积;(2)若为的中点,求直线与平面所成角的大小.18. 若.(1)过,求解集;(2)存在使得成等差数列,求的取值范围.19. 为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示: 时间范围学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:其中,.)20. 已知双曲线左右顶点分别为,过点的直线交双曲线于两点.(1)若离心率时,求的值.(2)若为等腰三角形时,且点在第一象限,求点的坐标.(3)连接并延长,交双曲线于点,若,求取值范围.21. 对于一个函数和一个点,令,若是取到最小值的点,则称是在的“最近点”.(1)对于,求证:对于点,存在点,使得点是在的“最近点”;(2)对于,请判断是否存在一个点,它是在“最近点”,且直线与在点处的切线垂直;(3)已知在定义域R上存在导函数,且函数 在定义域R上恒正,设点,.若对任意的,存在点同时是在的“最近点”,试判断的单调性.2024年上海市高考数学试卷【题后含答案、解析】一、填空题(本大题共有12题,满分54分.其中第1-6题每题4分,第7-12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1. 设全集,集合,则______.【答案】【解析】【详解】由题设有,故答案为:2. 已知则______.【答案】【解析】【详解】因故,故答案为:.3. 已知则不等式的解集为______.【答案】【解析】【详解】方程的解为或,故不等式的解集为,故答案为:.4. 已知,,且是奇函数,则______.【答案】【解析】【详解】因为是奇函数,故即,故,故答案为:.5. 已知,且,则的值为______.【答案】15【解析】【详解】,,解得.故答案为:15.6. 在的二项展开式中,若各项系数和为32,则项的系数为______.【答案】10【解析】【详解】令,,即,解得,所以的展开式通项公式为,令,则,.故答案为:10.7. 已知抛物线上有一点到准线的距离为9,那么点到轴的距离为______.【答案】【解析】【详解】由知抛物线的准线方程为,设点,由题意得,解得,代入抛物线方程,得,解得,则点到轴的距离为.故答案为:.8. 某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是______.【答案】0.85【解析】【详解】由题意知,题库的比例为:, 各占比分别为,则根据全概率公式知所求正确率.故答案为:0.85.9. 已知虚数,其实部为1,且,则实数为______.【答案】2【解析】【详解】设,且.则,,,解得,故答案为:2.10. 设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值______.【答案】329【解析】【详解】由题意知集合中且至多只有一个奇数,其余均是偶数.首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有个;②当个位不为0时,则个位有个数字可选,百位有个数字可选,十位有个数字可选,根据分步乘法这样的偶数共有,最后再加上单独的奇数,所以集合中元素个数的最大值为个.故答案为:329.11. 已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则______(精确到0.1度)【答案】【解析】【详解】设,在中,由正弦定理得,即’即①在中,由正弦定理得,即,即,②因为,得,利用计算器即可得,故答案为:.12. 无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是______.【答案】【解析】【详解】由题设有,因为,故,故,当时,,故,此时为闭区间,当时,不妨设,若,则,若,则,若,则,综上,,又为闭区间等价于为闭区间,而,故对任意恒成立,故即,故,故对任意的恒成立,因,故当时,,故即.故答案为:.二、选择题(本大题共有4题,满分18分,其中第13-14题每题满分4分,第15-16题每题满分5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得满分,否则一律得零分.13. 已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是( )A 气候温度高,海水表层温度就高B. 气候温度高,海水表层温度就低C. 随着气候温度由低到高,海水表层温度呈上升趋势D. 随着气候温度由低到高,海水表层温度呈下降趋势【答案】C【解析】【详解】对于AB,当气候温度高,海水表层温度变高变低不确定,故AB错误.对于CD,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C正确,D错误.故选:C.14. 下列函数的最小正周期是的是( )A. B. C. D. 【答案】A【解析】【详解】对A,,周期,故A正确;对B,,周期,故B错误;对于选项C,,是常值函数,不存在最小正周期,故C错误;对于选项D,,周期,故D错误,故选:A.15. 定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,使得.已知,则的充分条件是( )A. B. C. D. 【答案】C【解析】【详解】由题意知这三个向量共面,即这三个向量不能构成空间的一个基底,对A,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对B,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对C, 由空间直角坐标系易知三个向量不共面,可构成空间的一个基底,则由能推出,对D,由空间直角坐标系易知三个向量共面,则当无法推出,故D错误.故选:C.16. 已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是( )A. 存在是偶函数 B. 存在在处取最大值C. 存在是严格增函数 D. 存在在处取到极小值【答案】B【解析】【详解】对于A,若存在 是偶函数, 取 ,则对于任意 , 而 , 矛盾, 故 A 错误;对于B,可构造函数满足集合,当时,则,当时,,当时,,则该函数的最大值是,则B正确;对C,假设存在,使得严格递增,则,与已知矛盾,则C错误;对D,假设存在,使得在处取极小值,则在的左侧附近存在,使得,这与已知集合的定义矛盾,故D错误;故选:B.三、解答题(本大题共有5题,满分78分)解下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17. 如图为正四棱锥为底面的中心.(1)若,求绕旋转一周形成的几何体的体积;(2)若为的中点,求直线与平面所成角的大小.【答案】(1) (2)【解析】【小问1详解】正四棱锥满足且平面,由平面,则,又正四棱锥底面是正方形,由可得,,故,根据圆锥的定义,绕旋转一周形成的几何体是以为轴,为底面半径的圆锥,即圆锥的高为,底面半径为,根据圆锥的体积公式,所得圆锥的体积是【小问2详解】连接,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,由是中点,则,又平面,故平面,即平面,又平面,于是直线与平面所成角的大小即为,不妨设,则,,又线面角的范围是,故.即为所求.18. 若.(1)过,求的解集;(2)存在使得成等差数列,求的取值范围.【答案】(1) (2)【解析】【小问1详解】因为的图象过,故,故即(负的舍去),而在上为增函数,故,故即,故的解集为.小问2详解】因为存在使得成等差数列,故有解,故,因为,故,故在上有解,由在上有解,令,而在上的值域为,故即.19. 为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示: 时间范围学业成绩优秀544423。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.