好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2013年高考数学试卷(文)(上海)【含答案、解析】.doc

16页
  • 卖家[上传人]:to****33
  • 文档编号:614033638
  • 上传时间:2025-08-27
  • 文档格式:DOC
  • 文档大小:317KB
  • / 16 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2013年全国普通高等学校招生统一考试上海 数学试卷(文史类)考生注意:1.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.2.本试卷共有23道试题,满分150分.考试时间120分钟.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.不等式<0的解为 .2.在等差数列中,若a1+ a2+ a3+ a4=30,则a2+ a3= .3.设m∈R,m2+m-2+( m2-1)i是纯虚数,其中i是虚数单位,则m= .4.已知=0,=1,则y= .5.已知ABC的内角A、B、C所对的边分别是a、b、c.若a2+ab+b2-c2=0,则角C的大小是 .6.某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别是75、80,则这次考试该年级学生平均分数为 .7.设常数a∈R.若的二项展开式中x7项的系数为-10,则a= .8.方程的实数解为 .9.若cosxcosy+sinxsiny=,则cos(2x-2y)= .10.已知圆柱的母线长为l,底面半径为r,O是上底面圆心,A、B是下底面圆周上的两个不同的点,BC是母线,如图.若直线OA与BC所成角的大小为,则= .11.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是 (结果用最简分数表示).12.设AB是椭圆的长轴,点C在上,且.若AB=4,BC=,则的两个焦点之间的距离为 .13.设常数a>0.若对一切正实数x成立,则a的取值范围为 .14.已知正方形ABCD的边长为1.记以A为起点,其余顶点为终点的向量分别为、、;以C为起点,其余顶点为终点的向量分别为、、.若i,j,k,l∈且i≠j,k≠l,则·的最小值是 .二、选择题(本大题共有4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.函数(x≥0)的反函数为f -1(x),则f -1(2)的值是( )(A)(B)-(C)1+(D)1-16.设常数a∈R,集合A=,B=.若A∪B=R,则a的取值范围为( )(A)(-∞,2) (B)(-∞,2] (C)(2,+∞) (D)[2,+∞)17.钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的( )(A)充分条件 (B)必要条件(C)充分必要条件 (D)既非充分又非必要条件18、当点(x,y)分别在,,…上时,x+y的最大值分别是M1,M2,…,则=( )(A)0 (B) (C)2 (D)三、解答题(本大题共有5下题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)如图,正三棱锥O-ABC的底面边长为2,高为1,求该三棱锥的体积及表面积。

      20.(本题满分14分)本题共有2个小题,第1小题满分5分,第2小题满分9分.甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100元.(1)求证:生产a千克该产品所获得的利润为100a元;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数,其中常数ω>0.(1)令ω=1,判断函数的奇偶性,并说明理由;(2)令ω=2,将函数y=f(x)的图像向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图像.对任意a∈R,求y=g(x)在区间[a,a+10π]上零点个数的所有可能值.22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.已知函数,无穷数列满足an+1=f(an),n∈N*(1)若a1=0,求a2,a3,a4;(2)若a1>0,且a1,a2,a3成等比数列,求a1的值.(3)是否存在a1,使得a1,a2,…,an…成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.23.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.如图,已知双曲线C1:,曲线C2:.P是平面内一点.若存在过点P的直线与C1、C2都有共同点,则称P为“C1-C2型点”.(1)在正确证明C1的左焦点是“C1-C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y=kx与C2有公共点,求证>1,进而证明圆点不是“C1-C2型点”;(3)求证:圆内的点都不是“C1-C2型点”.以下内容,题后含答案、解析2013年全国普通高等学校招生统一考试上海 数学试卷(文史类)考生注意:1.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.2.本试卷共有23道试题,满分150分.考试时间120分钟.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.不等式<0的解为 .【答案】 【解析】2.在等差数列中,若a1+ a2+ a3+ a4=30,则a2+ a3= 15 .【答案】 15【解析】 3.设m∈R,m2+m-2+( m2-1)i是纯虚数,其中i是虚数单位,则m= .【答案】 -2【解析】 4.已知=0,=1,则y= 1 .【答案】 1【解析】 5.已知ABC的内角A、B、C所对的边分别是a、b、c.若a2+ab+b2-c2=0,则角C的大小是 .【答案】 【解析】6.某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别是75、80,则这次考试该年级学生平均分数为 78 .【答案】 78【解析】 7.设常数a∈R.若的二项展开式中x7项的系数为-10,则a= -2 .【答案】 -2【解析】8.方程的实数解为 .【答案】 【解析】9.若cosxcosy+sinxsiny=,则cos(2x-2y)= .【答案】 【解析】 10.已知圆柱的母线长为l,底面半径为r,O是上底面圆心,A、B是下底面圆周上的两个不同的点,BC是母线,如图.若直线OA与BC所成角的大小为,则= .【答案】 【解析】 11.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是 (结果用最简分数表示).【答案】 【解析】考查排列组合;概率计算策略:正难则反。

      12.设AB是椭圆的长轴,点C在上,且.若AB=4,BC=,则的两个焦点之间的距离为 .【答案】 【解析】 如右图所示13.设常数a>0.若对一切正实数x成立,则a的取值范围为 .【答案】 【解析】 考查均值不等式的应用14.已知正方形ABCD的边长为1.记以A为起点,其余顶点为终点的向量分别为、、;以C为起点,其余顶点为终点的向量分别为、、.若i,j,k,l∈且i≠j,k≠l,则·的最小值是 -5 .【答案】 -5【解析】 根据对称性,二、选择题(本大题共有4小题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.函数(x≥0)的反函数为f -1(x),则f -1(2)的值是( A )(A)(B)-(C)1+(D)1-【答案】 A【解析】 选A16.设常数a∈R,集合A=,B=.若A∪B=R,则a的取值范围为( B )(A)(-∞,2) (B)(-∞,2] (C)(2,+∞) (D)[2,+∞)【答案】 B【解析】 方法:代值法,排除法当a=1时,A=R,符合题意;当a=2时,综上,选B标准解法如下: .选B17.钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的( A )(A)充分条件 (B)必要条件(C)充分必要条件 (D)既非充分又非必要条件【答案】 A【解析】 选A18、当点(x,y)分别在,,…上时,x+y的最大值分别是M1,M2,…,则=( D )(A)0 (B) (C)2 (D)【答案】 D【解析】 选D三、解答题(本大题共有5下题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)如图,正三棱锥O-ABC的底面边长为2,高为1,求该三棱锥的体积及表面积。

      答案】 【解析】 所以,20.(本题满分14分)本题共有2个小题,第1小题满分5分,第2小题满分9分.甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100元.(1)求证:生产a千克该产品所获得的利润为100a元;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.【答案】 (1) 见下 (2)当生产速度为6千克/小时,这时获得最大利润为457500元解析】 (1)证明:由题知,生产a千克该产品所需要的时间小时, 所获得的利润 所以,生产a千克该产品所获得的利润为100a元;(证毕)(2) 由(1)知,生产900千克该产品即a=900千克时,获得的利润由二次函数的知识可知,当=,即x=6时,所以,当生产速度为6千克/小时,这时获得最大利润为457500元21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数,其中常数ω>0.(1)令ω=1,判断函数的奇偶性,并说明理由;(2)令ω=2,将函数y=f(x)的图像向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图像.对任意a∈R,求y=g(x)在区间[a,a+10π]上零点个数的所有可能值.【答案】 (1) (2) 20,21【解析】 (1)(2)ω=2,将函数y=f(x)的图像向左平移个单位,再向上平移1个单位,得到函数y=g(x):.所以y=g(x)在区间[a, a+10π]、其长度为10个周期上,零点个数可以取20,21个22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.已知函数,无穷数列满足an。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.