
2024学年安徽省定远县三中高二数学第一学期期末复习检测试题含解析.doc
14页2024学年安徽省定远县三中高二数学第一学期期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.的展开式中,常数项为()A. B.C. D.2.若方程表示双曲线,则( )A. B.C. D.3.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高二被抽取的人数为人,那么高三被抽取的人数为()A. B.C. D.4.已知,且,则实数的值为( )A. B.3C.4 D.65.等差数列中,,则()A. B.C. D.6.2021年7月,某文学网站对该网站的数字媒体内容能否满足读者需要进行了调查,调查部门随机抽取了名读者,所得情况统计如下表所示:满意程度学生族上班族退休族满意一般不满意记满分为分,一般为分,不满意为分.设命题:按分层抽样方式从不满意的读者中抽取人,则退休族应抽取人;命题:样本中上班族对数字媒体内容满意程度的方差为.则下列命题中为真命题的是()A. B.C. D.7.德国数学家米勒曾提出最大视角问题,这一问题一般的描述是:已知点A、B是的ON边上的两个定点,C是OM边上的一个动点,当C在何处时,最大?问题的答案是:当且仅当的外接圆与边OM相切于点C时,最大.人们称这一命题为米勒定理.已知点P、Q的坐标分别是(2,0),(4,0),R是y轴正半轴上的一动点,当最大时,点R的纵坐标为()A.1 B.C. D.28.某市统计局网站公布了2017年至2020年该市政府部门网站的每年的两项访问量,数据如下:年度项目2017年2018年2019年2020年独立用户访问总量(单位:个)2512573924400060989网站总访问量(单位:次)23435370348194783219288下列表述中错误的是( )A.2017年至2018年,两项访问量都增长幅度较大;B.2018年至2019年,两项访问量都有所回落;C.2019年至2020年,两项访问量都又有所增长;D.从数据可以看出,该市政府部门网站的两项访问量都呈逐年增长态势9.已知等比数列满足,,则( )A.21 B.42C.63 D.8410.圆的圆心为( )A. B.C. D.11.设是数列的前项和,已知,则数列( )A.是等比数列,但不是等差数列 B.是等差数列,但不是等比数列C.是等比数列,也是等差数列 D.既不是等差数列,也不是等比数列12.已知三棱锥OABC,点M,N分别为AB,OC的中点,且,用表示,则等于( )A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.甲、乙两人独立地破译一份密码,已知各人能破译的概率分别为,则密码被成功破译的概率_________14.已知球的表面积为,则该球的体积为______.15.已知直线与圆交于A,B两点,过A,B分别做l的垂线与x轴交于C,D两点,若|AB|=4,则|CD|=_____________.16.过圆内的点作一条直线,使它被该圆截得的线段最长,则直线的方程是______三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)已知椭圆点(1)若椭圆的左焦点为,上顶点为,求点到直线的距离;(2)若点是椭圆的弦的中点,求直线的方程18.(12分)在△ABC中,(1)求B的大小;(2)求cos A+cos C的最大值19.(12分)芯片作为在集成电路上的载体,广泛应用在、军工、航天等多个领域,是能够影响一个国家现代工业的重要因素.根据市场调研与统计,某公司七年时间里在芯片技术上的研发投入x(亿元)与收益y(亿元)的数据统计如下:(1)根据折线图的数据,求y关于x的线性回归方程(系数精确到整数部分);(2)为鼓励科技创新,当研发技术投入不少于16亿元时,国家给予公司补贴5亿元,预测当芯片的研发投入为17亿元时公司的实际收益附:其回归方程的斜率和截距的最小二乘法估计分别为,.参考数据,20.(12分)已知命题:,在下面①②中任选一个作为:,使为真命题,求出实数a取值范围.①关于x的方程有两个不等正根;②.(若选①、选②都给出解答,只按第一个解答计分.)21.(12分)的内角A,B,C的对边分别为a,b,c.已知.(1)求B(2)___________,若问题中的三角形存在,试求出;若问题中的三角形不存在,请说明理由.在①,②,③这三个条件中任选一个,补充在横线上.注:如果选择多个条件分别解答,按第一个解答计分.22.(10分)已知正项数列的前项和满足(1)求数列的通项公式;(2)若,求数列的前项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1、A【解题分析】写出展开式通项,令的指数为零,求出参数的值,代入通项计算即可得解.【题目详解】的展开式通项为,令,可得,因此,展开式中常数项为.故选:A.2、C【解题分析】根据曲线方程表示双曲线方程有,即可求参数范围.【题目详解】由题设,,可得.故选:C.3、C【解题分析】利用分层抽样求出的值,进而可求得高三被抽取的人数.【题目详解】由分层抽样可得,可得,设高三所抽取的人数为,则,解得.故选:C.4、B【解题分析】根据给定条件利用空间向量垂直的坐标表示计算作答.详解】因,且,则有,解得,所以实数的值为3.故选:B5、C【解题分析】由等差数列的前项和公式和性质进行求解.【题目详解】由题意,得.故选:C.6、A【解题分析】由抽样比再乘以可得退休族应抽取人数可判断命题,求出上班族对数字媒体内容满意程度的平均分,由方差公式计算方差可判断,再由复合命题的真假判断四个选项,即可得正确选项.【题目详解】因为退休族应抽取人,所以命题正确;样本中上班族对数字媒体内容满意程度的平均分为,方差为,命题正确,所以为真,、、为假命题,故选:7、C【解题分析】由题意,借助米勒定理,可设出坐标,表示出的外接圆方程,然后在求解点R的纵坐标.【题目详解】因为点P、Q的坐标分别是(2,0),(4,0)是x轴正半轴上的两个定点,点R是y轴正半轴上的一动点,根据米勒定理,当的外接圆与y轴相切时,最大,由垂径定理可知,弦的垂直平分线必经过的外接圆圆心,所以弦的中点为(3,0),故弦中点的横坐标即为的外接圆半径,即,由垂径定理可得,圆心坐标为,故的外接圆的方程为,所以点R的纵坐标为.故选:C.8、D【解题分析】根据表格数据,结合各选项的描述判断正误即可.【题目详解】A:2017年至2018年,两项访问量分别增长、,显然增长幅度相较于后两年是最大的,正确;B:2018年至2019年,两项访问量相较于2017年至2018年都有回落,正确;C:2019年至2020年,两项访问量分别增长、,正确;D:由B分析知,该市政府部门网站的两项访问量在2018年至2019年有回落,而不是逐年增长态势,错误.故选:D.9、D【解题分析】设等比数列公比为q,根据给定条件求出即可计算作答.【题目详解】等比数列公比为q,由得:,即,而,解得,所以.故选:D10、D【解题分析】由圆的标准方程求解.【题目详解】圆的圆心为,故选:D11、B【解题分析】根据与的关系求出通项,然后可知答案.【题目详解】当时,,当时,,综上,的通项公式为,数列为等差数列同理,由等比数列定义可判断数列不是等比数列.故选:B12、D【解题分析】根据空间向量的加法、减法和数乘运算可得结果.【题目详解】.故选:D二、填空题:本题共4小题,每小题5分,共20分。
13、【解题分析】根据题意,由相互独立事件概率的乘法公式可得密码没有被破译的概率,进而由对立事件的概率性质分析可得答案【题目详解】解:根据题意,甲乙两人能成功破译的概率分别是,,则密码没有被破译,即甲乙都没有成功破译密码概率,故该密码被成功破译的概率故答案为:14、【解题分析】设球半径为,由球表面积求出,然后可得球的体积【题目详解】设球半径为,∵球的表面积为,∴,∴,∴该球的体积为故答案为【题目点拨】解答本题的关键是熟记球的表面积和体积公式,解题时由条件求得球的半径后可得所求结果15、【解题分析】先求出圆心和半径,由于半径为2,弦|AB|=4,所以可知直线过圆心,从而得,求出,得到直线方程且倾斜角为135°,进而可求出|CD|【题目详解】圆,圆心(1,2),半径r=2,∵|AB|=4,∴直线过圆心(1,2),∴,∴,∴直线,倾斜角为135°,∵过A,B分别做l的垂线与x轴交于C,D两点,∴.故答案为:4【题目点拨】此题考查直线与圆的位置关系,考查两直线的位置关系,考查转化思想和计算能力,属于基础题16、【解题分析】当直线l过圆心时满足题意,进而求出答案.【题目详解】圆的标准方程为:,圆心,当l过圆心时满足题意,,所以l的方程为:.故答案为:.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤17、(1)(2)【解题分析】(1)根据椭圆基本关系求得,,再利用截距式求得方程,进而求得点到直线的距离.(2) 设,利用点差法求解即可.【题目详解】(1)椭圆的左焦点是,上顶点,方程为,即,点到直线的距离;(2)设,,,,又,,两式相减得:,,即直线的斜率为,直线的方程为:,即【题目点拨】本题主要考查了椭圆中的基本量运算以及点差法的运用,属于基础题.18、(1)(2)1【解题分析】(1)由余弦定理及题设得;(2)由(1)知当时,取得最大值试题解析: (1)由余弦定理及题设得,又∵,∴;(2)由(1)知,,因为,所以当时,取得最大值考点:1、解三角形;2、函数的最值.19、(1) (2)85亿元【解题分析】(1)利用公式和数据计算即可(2)代入回归直线计算即可【小问1详解】由折线图中数据知,,,因为,所以所以y关于x的线性回归方程为【小问2详解】当时,亿元,此时公司的实际收益的预测值为亿元20、答案见解析【解题分析】根据题意,分析、为真时的取值范围,又由复合命题真假的判断方法可得、都是真命题,据此分析可得答案.【题目详解】解:选①时由知在上恒成立,∴,即又由q:关于x的方程有两个不等正根,知解得,由为真命题知,解得.实数a的取值范围.选②时由知在上恒成立,∴,即又由,知在上恒成立,∴,又,当且仅当时取“=”号,∴,由为真命题知,解得.实数a的取值范围.21、(1)(2)答案见解析【解题分析】(1)由正弦定理及正弦的。
