好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

河北省秦皇岛市抚宁县驻操营学区八年级下册数学教案:《勾股定理的逆定理》新人教版.doc

10页
  • 卖家[上传人]:h****0
  • 文档编号:290377177
  • 上传时间:2022-05-09
  • 文档格式:DOC
  • 文档大小:481.50KB
  • / 10 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 勾股定理的逆定理第一课时 一、教学设计思路本节从古埃及人画直角的方法谈起,然后让学生画一些三角形(已知三边,并且两边的平方和等于第三边的平方).从而发现画出的三角形是直角三角形.猜想如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,即教科书中的命题2,把命题2的条件、结论与上节命题1的条件、结论作比较,引出逆命题的概念.二、教学目标知识与技能1.研究直角三角形的判别条件;2.熟记一些勾股数;3.研究勾股定理的逆定理的探究方法过程与方法用三边的数量关系来判断一个三角形是否为直角三角形,体会数形结合的思想情感态度与价值观1.通过对Rt判别条件的研究,树立大胆猜想,勇于探索的创新精神2.通过介绍有关历史资料,激发解决问题的愿望三、教学重点和难点教学重点:探究勾股定理的逆定理,理解互逆命题,原命题、逆命题的有关概念及关系教学难点:归纳、猜想出命题2的结论四、教学方法启发引导、分组讨论五、教学媒体多媒体课件演示六、教学过程设计(一)创设问题情境,引入新课(1)总结直角三角形有哪些性质2)一个三角形,满足什么条件是直角三角形?学生分组讨论,交流总结;教师引导学生回忆1)直角三角形有如下性质:①有一个角是直角;②两个锐角互余;③两直角边的平方和等于斜边的平方;④在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半。

      2)有一个内角是90°,那么这个三角形就为直角三角形.大家思考一下还有没有其他的方法来说明一个三角形是直角三角形呢?前面我们学习了勾股定理,可不可以用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?(二)讲授新课活动1问题:据说古埃及人用下图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角这个问题意味着,如果围成的三角形的三边分别为3、4、5.有下面的关系“32+42=52”.那么围成的三角形是直角三角形大家画一画、量一量,看看这样做出的三角形是直角三角形吗?再画画看,如果三角形的三边分别为2.5 cm、6 cm、6.5 cm,有下面的关系,“2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4 cm、7.5cm、8.5 cm.再试一试让学生在小组内共同合作,协手完成此活动用尺规作图的方法作出三角形,经过测量后,发现以上两组数组成的三角形是直角三角形,而且三边满足a2+b2=c2我们进而会想:是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?活动2下面的三组数分别是一个三角形的三边长a,b,c。

      5,12,13;7,24,25;8,15,171)这三组数都满足a2+b2=c2吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?学生进一步以小组为单位.按给出的三组数作出三角形,从而更加坚信前面猜想出的结论从而得出一个命题:命题2 如果三角形的三边长:a,b,c满足a2+b2=c2那么这个三角形是直角三角形同时,我们也进一步明白了古埃及人那样做的道理.实际上,古代中国人也曾利用相似的方法得到直角直至科技发达的今天——人类已跨入21世纪.建筑工地上的工人师傅们仍然离不开“三四五放线法”三四五放线法”是一种古老的归方操作所谓“归方”就是“做成:直角”譬如建造房屋,房角—般总是成90°,怎样确定房角的纵横两线呢? 如右图,欲过基线MN上的一点C作它的垂线,可由三名工人操作:一人手拿布尺或测绳的0和12尺处,固定在C点;另一人拿4尺处,把尺拉直,在MN上定出A点,再由一人拿9尺处把尺拉直,定出B点,于是连结BC,就是MN的垂线建筑工人用了3,4,5作出了一个直角,能不能用其他的整数组作出直角呢?据说,我国古代大禹治水测量工程时,也用类似的方法确定直角满足a2+b2=c2的三个正整数,称为勾股数。

      如3,4,5;5,12,13活动3问题:命题1 如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2命题2 如果三角形的三边长分别为a,b,c,满足a2+b2=c2那么这个三角形是直角三角形它们的题设和结论各有何关系?学生阅读课本,并回忆前面学过的一些命题,得出命题和逆命题的概念教师认真倾听学生的分析教师在本活动中应重点关注学生;①能否发现互逆命题的题没和结论之间的关系②能否积极主动地回忆我们前面学过的互逆命题三)课时小结问题:你对本节内容有哪些认识?教师课前准备卡片,卡片上写出三个数,让学生随意抽出,判断以这三个数为边的三角形能否构成直角三角形四)板书设计18.2勾股定理的逆定理(一)2.互逆命题、原命题、逆命题第二课时一、教学设计思路本节主要学习勾股定理逆定理的证明,经历证明勾股定理逆定理的过程,得出命题2是正确的,引出勾股定理的逆定理的概念,最后是利用勾股定理的逆定理解决实际问题的例子,可以进一步理解勾股定理的逆定理,体会数学与现实世界的联系二、教学目标知识与技能1.说出证明勾股定理逆定理的方法2.叙述逆定理,互逆定理的概念过程与方法1.经历证明勾股定理逆定理的过程,发展逻辑思维能力和空间想象能力。

      2.经历互为逆定理的讨论,树立严谨的治学态度和实事求是求学精神情感态度与价值观1.经历探索勾股定理逆定理证明的过程,树立克服困难的勇气和坚强的意志2.树立与人合作、交流的团队意识三、教学重点和难点教学重点:勾股定理逆定理的证明,及互逆定理的概念教学难点:互逆定理的概念四、教学方法合作探究五、教学媒体多媒体课件演示六、教学过程设计(一)创设问题情境,引入新课以下列各组线段为边长,能构成三角形的是___________(填序号).能构成直角三角形的是___________.①3,4,5 ②1,3,4 ③4,4,6 ④6,8,10 ⑤5,7,2 ⑥13,5,12 ⑦7,25,24帮助学生回忆构成三角形的条件和判定一个三角形为直角三角形的条件能构成三角形的是:①③④⑥⑦;能构成直角三角形的是;①④⑥⑦(二)讲授新课活动1命题2正确吗?如何证明呢?让学生试着寻找解题思路;教师可引导学生发现证明的思路师:ABC的三边长a,b,c满足a2+b2=c2,如果ABC是直角三角形,它应与直角边是a,b的直角三角形全等.实际情况是这样吗?我们画一个直角三角形,使(如下图)把画好的剪下,放在 ABC上,它们重合吗?生 我们所画的Rt,又因为c2=a2+b2,所以即。

      和三边对应相等,所以两个三角形全等,为直角三角形即命题2是正确的活动2当我们证明了命题2是正确的,那么命题就成为一个定理.由于命题1证明正确以后称为勾股定理,命题2又是命题l的逆命题,在此.我们就称定理2是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互为逆定理师:但是不是原命题成立,逆命题一定成立吗?师 你还能举出类似的例子吗?活动3练习:1.如果三条线段长a,b,c满足a2=c2-b2这三条线段组成的三角形是不是直角三角形?为什么?2.说出下列命题的逆命题.这些命题的逆命题成立吗?(1)两条直线平行,内错角相等2)如果两个实数相等,那么它们的绝对值相等3)全等三角形的对应角相等4)在角的平分线上的点到角的两边的距离相等进一步理解和掌握勾股定理的逆定理的本质特征,以及互为逆命题的关系及正确性;提高学生的数学应用意识和逻辑推理能力三)巩固提高[例1]—个零件的形状如下图所示,按规定这个零件中 和都应为直角.工人师傅量出了这个零件各边尺寸,那么这个零件符合要求吗?[例2] (1)判断题以a=10,b=8,c=6为边组成的三角形是不是直角三角形解:因为a2+b2=100+64=164c2,即所以由a,b,c不能组成直角三角形。

      请问:上述解法对吗?为什么?(2)已知:在中,AB=13cm ,BC=10cm,BC边上的中线AD=12cm 求证:AB=AC这是利用勾股定理的逆定理解决实际问题的例子,可以使学生进一步理解勾股定理的逆定理,体会数学与现实世界的联系例1:分析:这是一个利用直角三角形的判定条件解决实际问题的例子解:在中,所以是直角三角形在中,所以是直角三角形因此这个零件符合要求例2:(1)解:上述解法是不对的.因为a=10,b=8,c=6,b2+c2=64+36=100=102=a2,即b2+c2=a2所以由 a,b,c组成的三角形两边的平方和等于第三边的平方,利用勾股定理的逆定理可知a,b,c可构成直角三角形,其中a是斜边,b,c是两直角边评注:在解题时,我们不能简单地看两边的平方和是否等于第三边的平方,而应先判断哪一条边有可能作为斜边.往往只需看最大边的平方是否等于另外两边的平方和2)证明:根据题意,画出图形AB=13cm,BC=10cm AD是BC边上的中线→BD=CD=5cm,在中AD=12cm ,BD=5cm,AB=13cm,AB2=169,AD2+BD2=122+52=169所以AB2=AD2+BD2。

      则在Rt中,所以四)课时小结你对本节的内容有哪些认识?掌握勾股定理的逆定理及其应用.熟记几组勾股数 五)板书设计18.2勾股定理的逆定理(二)1.勾股定理的逆定理的证明构造Rt,使两直角边为a,b,,从而得斜边,得到≌,所以为直角三角形2.巩固提高第三课时一、教学设计思路本节进一步学习勾股定理的逆定理在实际生活中的广泛应用,经历将实际问题转化为数学模型的过程,给学生充分交流的时间和空间,学会自主学习二、教学目标知识与技能能运用勾股定理的逆定理解决简单的实际问题过程与方法1.经历将实际问题转化为数学模型的过程,体会用勾股定理的逆定理解决实际问题的方法,发展应用意识2.在解决实际问题的过程中,体验解决问题的策略,发展实践能力和创新精神情感态度与价值观1.在用勾股定理的逆定理探索解决实际问题的过程中获得成功的体验,锻炼克服困难的意志,建立学习数学的自信心2.在解决实际问题的过程中,形成实事求是的态度以及进行质疑和独立思考问题的习惯三、教学重点和难点教学重点:运用勾股定理的逆定理解决实际问题教学难点:将实际问题转化成用勾股定理的逆定理解决的数学问题四、教学方法合作探究、小组讨论五、教学媒体多媒体课件演示。

      六、教学过程设计(一)教授新课例1 判断由线段a、b、c组成的三角形是不是直角三角形1)a=15,b=8,c=17;(2)a=13,b=14,c=15;(3)求证m2-n2,m2+n2,2mn(m﹥n,m,n是正整数)是直角三角形的三条边长进一步让学生体会用勾股定理的逆定理,实现数和形的统一,第(3)题又让学生从一次从一般形式上去认识勾股数,如果能让学生熟记几组勾股数,我们在判断三角形的形状时,就可以避开很麻烦的运算解:(1)因为152+82=225+64=289,172=289,所以152+82=172,这个三角形是直角三角形2)因为132+142=169+196=365152=225所以1。

      点击阅读更多内容
      相关文档
      2023-2024学年山东省青岛高二上学期物理12月月考试题及答案.pdf 2023-2024学年重庆市沙坪坝区九年级上学期数学期末试题及答案.pdf 2023-2024学年山东省滨州高二上学期历史期末考试题及答案.pdf 2023-2024学年重庆市渝北区九年级上学期数学期末试题及答案.pdf 2024-2025学年山东济南章丘区七年级上册数学期中试卷及答案.pdf 2022-2023学年江苏省连云港高二下学期生物期中考试题及答案.pdf 2025年陕西学考选择性考试生物试题及答案.pdf 2025年甘肃学考选择性考试物理真题及答案.pdf 2025年福建学考选择性考试物理真题及答案.pdf 2025年辽宁学考选择性考试政治真题及答案.pdf 2025年黑龙江学考选择性考试政治真题及答案.pdf 2024-2025学年贵州省六盘水市八年级下学期期中英语试题及答案.pdf 2025年广东阳江中考化学试题及答案.pdf 2025年广东惠州中考英语试题及答案.pdf 2025年陕西学考选择性考试物理试题及答案.pdf 2024-2025学年重庆市铜梁区九年级上学期历史期末试题及答案.pdf 2024-2025学年重庆市潼南区九年级上学期化学期末试题及答案.pdf 人教版(2024)八上 Unit 8 Let’s Communicate 【语法专练+阅读专练+写作专练+单元提高】.pptx 课题2 水的组成 教学设计 初中化学人教版(2024)九年级上册 第四单元 自然界的水.docx 课题3 物质组成的表示 教学设计 初中化学人教版(2024)九年级上册 第四单元 自然界的水.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.