好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2022数学人教B版总复习学案8.6椭圆-第2课时直线与椭圆-含解析.docx

11页
  • 卖家[上传人]:I***
  • 文档编号:261882155
  • 上传时间:2022-03-04
  • 文档格式:DOCX
  • 文档大小:200.88KB
  • / 11 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第2课时 直线与椭圆必备知识预案自诊 知识梳理1.点P(x0,y0)与椭圆x2a2+y2b2=1(a>b>0)的位置关系当x02a2+y02b2>1时,点P在椭圆外;当x02a2+y02b2<1时,点P在椭圆内;当x02a2+y02b2=1时,点P在椭圆上.2.将直线方程与椭圆方程联立,消去y(或x),得到关于x(或y)的一元二次方程,则直线与椭圆相交⇔Δ>0;直线与椭圆相切⇔Δ=0;直线与椭圆相离⇔Δ<0.3.椭圆x2a2+y2b2=1(a>b>0)的通径长为2b2a.4.相交弦设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=1+k2|x1-x2|=(1+k2)[(x1+x2)2-4x1x2]或|AB|=1+1k2|y1-y2|=1+1k2[(y1+y2)2-4y1y2],k为直线斜率且k≠0.5.中点弦(1)主要题型:①求中点弦所在直线的方程;②求弦中点的轨迹.(2)处理方法①根与系数的关系法:将直线方程代入圆锥曲线的方程,消元后得到一个一元二次方程,利用根与系数的关系和中点坐标公式建立等式求解.②“点差法”:若斜率为k的直线l与圆锥曲线C有两个交点A(x1,y1),B(x2,y2),将A,B的坐标代入曲线方程,通过作差,构造出x1+x2,y1+y2,x1-x2,y1-y2,从而建立中点坐标和斜率的关系.以椭圆x2a2+y2b2=1(a>b>0)为例,若弦AB的中点为P(x0,y0),直线AB的斜率为k,将点A(x1,y1),B(x2,y2)的坐标代入椭圆方程得b2x12+a2y12=a2b2,b2x22+a2y22=a2b2,相减得b2(x1+x2)(x1-x2)+a2(y1+y2)(y1-y2)=0,所以b2x0(x1-x2)=-a2y0(y1-y2),即b2x0=-ka2y0.注意:此法不能保证直线与圆锥曲线一定有两个交点,故有时要用判别式加以检验.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)通径是所有的焦点弦中最短的弦.(  )(2)斜率为k的直线与椭圆x2a2+y2b2=1(a>b>0)相交于A,B两点,且AB的中点为P(x0,y0),则有b2x0=-ka2y0.(  )(3)由直线方程与椭圆方程联立消元可得一元二次方程.若二次项系数恒为正,且方程的Δ<0,则直线与椭圆一定有两个交点.(  )2.若直线y=x+2与椭圆x2m+y23=1有两个交点,则m的取值范围是(  )                A.(1,+∞) B.(1,3)∪(3,+∞)C.(3,+∞) D.(0,3)∪(3,+∞)3.(2020四川成都模拟)已知斜率为1的直线l与椭圆x24+y2=1相交于A,B两点,则|AB|的最大值为(  )A.2 B.455 C.4105 D.81054.已知椭圆y2a2+x2b2=1(a>b>0)的右顶点为A(1,0),过其焦点且垂直于长轴的弦长为1,则椭圆方程为     . 5.(2020山西太原联考)已知椭圆的方程为x2+2y2-4=0,则以M(1,1)为中点的弦所在直线方程为    . 关键能力学案突破 考点直线与椭圆的位置关系【例1】已知直线l:y=2x+m,椭圆C:x24+y22=1.试问当m取何值时,直线l与椭圆C:(1)有两个公共点;(2)有且只有一个公共点;(3)没有公共点.解题心得判断直线与椭圆位置关系的方法(1)判断直线与椭圆的位置关系,一般转化为研究直线方程与椭圆方程组成的方程组解的个数.(2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点.对点训练1若直线y=kx+1与椭圆x25+y2m=1总有公共点,则m的取值范围是(  )                A.(1,+∞) B.(0,+∞)C.(0,1)∪(1,5) D.[1,5)∪(5,+∞)考点弦长问题【例2】已知椭圆M:x2a2+y2b2=1(a>b>0)的离心率为63,焦距为22.斜率为k的直线l与椭圆M有两个不同的交点A,B.(1)求椭圆M的方程;(2)若k=1,求|AB|的最大值;(3)设点P(-2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D,若点C,D和点Q-74,14共线,求k的值.解题心得1.弦长的求解方法(1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解.(2)当直线的斜率存在时,斜率为k的直线l与椭圆相交于A(x1,y1),B(x2,y2)两点,则弦长公式的常见形式有如下几种:①|AB|=1+k2|x1-x2|=(1+k2)[(x1+x2)2-4x1x2];②|AB|=1+1k2|y1-y2|=1+1k2[(y1+y2)2-4y1y2](k≠0).2.弦长公式的运用技巧弦长公式的运用需要利用曲线方程和直线方程联立建立一元二次方程,不同形式的直线方程直接关系到计算量的大小.我们的经验是:若直线经过的定点在y轴上且斜率存在,一般设为斜截式方程y=kx+b便于运算;若直线经过的定点在x轴上且斜率不为0,一般设为my=x-a可以减小运算量.对点训练2已知斜率为2的直线经过椭圆x25+y24=1的右焦点F1,与椭圆相交于A,B两点,则弦AB的长为    . 考点中点弦、弦中点问题(多考向探究)考向1 由中点弦确定直线方程或曲线方程【例3】已知椭圆x22+y2=1.(1)求斜率为2的平行弦中点的轨迹方程;(2)求过点P12,12且被点P平分的弦所在直线的方程.解题心得处理有关中点弦及对应直线斜率关系的问题时,常用“点差法”,步骤如下:对点训练3(1)过椭圆x264+y236=1上一点P(-8,0)作直线交椭圆于Q点,则PQ中点的轨迹方程为     . (2)焦点为F(0,52),并截直线y=2x-1所得弦的中点的横坐标是27的椭圆的标准方程为     . 考向2 对称问题【例4】如图,已知椭圆x22+y2=1的左焦点为F,O为坐标原点,设过点F且不与坐标轴垂直的直线交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.解题心得求解椭圆中对称问题的常用方法(1)将对称两点所在的直线方程与椭圆方程联立,由Δ>0建立不等关系,再由对称两点的中点在所给直线上,建立相等关系,由相等关系消参,由不等关系确定范围.(2)用参数表示中点坐标,利用中点在椭圆内部建立关于参数的不等式,解不等式得参数范围.提醒:解决对称问题除掌握解决中点弦问题的方法外,还要注意“若点A,B关于直线l对称,则l垂直于直线AB且AB的中点在直线l上”的应用.对点训练4已知椭圆x22+y2=1上两个不同的点A,B关于直线y=mx+12对称.求实数m的取值范围.考点椭圆与向量的综合问题【例5】设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,离心率为33,过点F且与x轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点,若AC·DB+AD·CB=8,O为坐标原点,求△OCD的面积.解题心得解决椭圆中与向量有关问题的方法(1)将向量条件用坐标表示,再利用函数、方程知识建立数量关系.(2)利用向量关系转化成相关的等量关系.(3)利用向量运算的几何意义转化成图形中位置关系.对点训练5(2020湖南永州二模)已知动点M到两定点F1(-m,0),F2(m,0)的距离之和为4(0b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点.若AB的中点坐标为M(1,-1),则椭圆E的标准方程为(  )                A.x245+y236=1 B.x236+y227=1C.x227+y218=1 D.x218+y29=1答案D解析设点A(x1,y1),B(x2,y2),则x1+x2=2,y1+y2=-2,x12a2+y12b2=1,x22a2+y22b2=1,两式相减得(x1+x2)(x1-x2)a2+(y1+y2)(y1-y2)b2=0,所以kAB=y1-y2x1-x2=-b2(x1+x2)a2(y1+y2)=b2a2.又kAB=0+13-1=12,所以b2a2=12.又a2-b2=c2=9,所以b2=9,a2=18.所以椭圆E的标准方程为x218+y29=1.解题心得本题设出A,B两点的坐标,却不求出A,B两点的坐标,巧妙地表达出直线AB的斜率,通过将直线AB的斜率“算两次”建立几何量之间的关系,从而快速解决问题.技巧三 巧用“根与系数的关系”,化繁为简【例3】已知椭圆x24+y2=1的左顶点为A,过点A作两条互相垂直的弦AM,AN交椭圆于M,N两点.(1)当直线AM的斜率为1时,求点M的坐标;(2)当直线AM的斜率变化时,直线MN是否过x轴上的一个定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.解(1)当直线AM的斜率为1时,直线AM的方程为y=x+2,代入椭圆方程并化简得5x2+16x+12=0,解得x1=-2,x2=-65.所以点M-65,45.(2)由题意可知直线AM,AN的斜率存在,且不为0.设直线AM的斜率为k(k≠0),直线AM的方程为y=k(x+2),直线AN的方程为y=-1k(x+2).由y=k(x+2),x24+y2=1,化简得(1+4k2)x2+16k2x+16k2-4=0,则xA+xM=-16k21+4k2.又xA=-2,所以xM=-xA-16k21+4k2=2-16k21+4k2=2-8k21+4k2.同理,可得xN=2k2-8k2+4.当xM=xN时,2-8k21+4k2=2k2-8k2+4,解得k=±1.此时直线MN的方程为x=-65,直线MN过x轴上的点-65,0.当xM≠xN时,k≠±1,因为点M2-8k21+4k2,4k1+4。

      点击阅读更多内容
      相关文档
      2025年湖南省普通高中学业水平合格性考试数学(原卷版).docx 2025年高考真题化学(四川卷) Word版含解析.docx 2025届辽宁省本溪市高级中学高三下学期第七次模拟物理Word版.docx 山西省百师联盟2025-2026学年高三上学期开学摸底联考历史(解析版).docx 山东省潍坊市2025-2026学年高三上学期开学调研监测政治(解析版).docx 湖南省岳阳市2025届高三上学期教学质量监测(一)化学Word版含解析.docx 辽宁省辽西重点高中2025-2026学年高三上学期开学摸底考试历史(解析版).docx 湖南省怀化市2025-2026学年高一上学期开学检测语文Word版含解析.docx 广西壮族自治区部分学校2025-2026学年高二上学期开学质量检测历史(原卷版).docx 广东省西浦教育集团外国语高中2024-2025学年高三第四次模拟(开学考)化学(原卷版).docx 辽宁省辽西重点高中2025-2026学年高二上学期开学考数学 Word版含解析.docx 福建省全国名校联盟2025-2026学年高三上学期联合开学摸底考试历史(原卷版).docx 湖南省怀化市2025-2026学年高一上学期开学检测语文(原卷版).docx 湖南省岳阳市2025届高三上学期教学质量监测(一)化学(原卷版).docx 浙江省名校新高考研究联盟(Z20 名校联盟)2026届高三上学期联考数学Word版无答案.docx 重庆市七校联盟2026届高三上学期第一次适应性考试 生物答案 Word版.docx 辽宁省大连市2024-2025学年高一下学期期末考试数学 Word版无答案.docx 福建省全国名校联盟2025-2026学年高三上学期联合开学摸底考试历史(解析版).docx 2024届河北省部分高中高三下学期二模化学Word版.docx 湖北省襄阳市2024-2025学年高二下学期期末考试地理 Word版含解析.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.