
6.2.1排列(新版高中数学课件教案学案习题人教A版选择性必修第三册).doc
11页6.2 排列与组合6.2.1 排列课标要求素养要求1.通过实例理解排列的概念.2.能应用排列知识解决简单的实际问题.通过学习排列的概念,进一步提升数学抽象及逻辑推理素养.新知探究 “排列三”是中国福利彩票的一种,它是使用摇奖机、摇奖球进行摇奖的,“排列三”,“排列五”共同摇奖,一次摇出5个号码,“排列三”的中奖号码为当期摇出的全部中奖号码的前3位,“排列五”的中奖号码为当期摇出的全部中奖号码,每日进行开奖.问题 福彩3D即“排列三”摇出的号码的总的结果数是多少?提示 以第1位数为例,第1位的奖号是从0到9这10个数字中摇出一个,每个数字都有相同概率摇出,所以第1位上就有10种可能,同理第2位、第3位都各有10种可能,前3位总共就有1 000种组合方法.排列的定义排列定义中两层含义:一是“取出元素”,二是“按照一定的顺序”一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.拓展深化[微判断]1.在一个排列中,若交换两个元素的位置,则该排列不发生变化.()提示 在一个排列中,若交换两个元素的位置,则该排列与原来的排列不同.2.在一个排列中,同一个元素不能重复出现.(√)3.从1,2,3,4中任选两个元素,就组成一个排列.()提示 从1,2,3,4中任选两个元素并按照一定的顺序排成一列,才能组成一个排列.4.从5个同学中任选2个同学分别参加数学和物理竞赛的所有不同的选法是一个排列问题.(√)[微训练]1.有5本不同的书,从中选3本送给3名同学,每人各1本,则送法共有( )A.5种 B.3种C.60种 D.15种解析 从5本不同的书中选出3本分别送给3名同学的一种送法,对应于从5个不同元素中取出3个元素的一个排列,因此,共有送法543=60(种).答案 C2.从5名同学中选出正、副组长各1名,有__________种不同的选法(用数字作答).解析 从5名同学中选出正、副组长各1名,即从5个不同元素中选出2个元素进行排列,不同的选法种数为54=20.答案 20[微思考]用1,2,3这三个数字共可以排成多少个无重复数字的三位数?123与321是不是相同的排列?提示 共可以得到6个三位数,123与321是不同的排列,只有两个排列元素相同,顺序也相同时,才是同一个排列.题型一 排列的概念【例1】 判断下列问题是否为排列问题.(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.解 (1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3),(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如甲当班长与当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2),(5),(6)属于排列问题.规律方法 判断一个具体问题是否为排列问题的方法【训练1】 下列问题是排列问题吗?(1)从1,2,3,4四个数字中,任选两个做加法,其结果有多少种不同的可能?(2)从1,2,3,4四个数字中,任选两个做除法,其结果有多少种不同的可能?(3)会场有50个座位,要求选出3个座位有多少种方法?若选出3个座位安排3位客人入座,又有多少种方法?解 (1)不是;(2)是;(3)第一问不是,第二问是.理由:由于加法运算满足交换律,所以选出的两个元素做加法求结果时,与两个元素的位置无关,但列除法算式时,两个元素谁作除数,谁作被除数不一样,此时与位置有关.选出3个座位与顺序无关,“入座”问题同“排队”,与顺序有关,故选3个座位安排3位客人入座是排列问题.题型二 排列的列举问题【例2】 (1)从1,2,3,4四个数字中任取两个数字组成无重复数字的两位数,一共可以组成多少个?(2)写出从4个元素a,b,c,d中任取3个元素的所有排列.解 (1)由题意作“树状图”,如下.故组成的所有两位数为12,13,14,21,23,24,31,32,34,41,42,43,共有12个.(2)由题意作“树状图”,如下.故所有的排列为abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cdb,dab,dac,dba,dbc,dca,dcb.规律方法 利用“树状图”法解决简单排列问题的适用范围及策略(1)适用范围:“树状图”在解决排列元素个数不多的问题时,是一种比较有效的表示方式.(2)策略:在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准进行分类,再安排第二个元素,并按此元素分类,依次进行,直到完成一个排列,这样能做到不重不漏,然后再按树状图写出排列.【训练2】 写出A,B,C,D四名同学站成一排照相,A不站在两端的所有可能站法.解 由题意作“树状图”,如下,故所有可能的站法是BACD,BADC,BCAD,BDAC,CABD,CADB,CBAD,CDAB,DABC,DACB,DBAC,DCAB.题型三 排列的简单应用【例3】 用具体数字表示下列问题.(1)从100个两两互质的数中取出2个数,其商的个数;(2)由0,1,2,3组成的能被5整除且没有重复数字的四位数的个数;(3)有4名大学生可以到5家单位实习,若每家单位至多招1名实习生,每名大学生至多到1家单位实习,且这4名大学生全部被分配完毕,其分配方案的个数.解 (1)从100个两两互质的数中取出2个数,分别作为商的分子和分母,其商共有10099=9 900(个).(2)因为组成的没有重复数字的四位数能被5整除,所以这个四位数的个位数字一定是“0”,故确定此四位数,只需确定千位数字、百位数字、十位数字即可,共有321=6(个).(3)可以理解为从5家单位中选出4家单位,分别把4名大学生安排到4家单位,共有5432=120(个)分配方案.规律方法 要想正确地表示排列问题的排列个数,应弄清这件事中谁是分步的主体,分清m个元素和n(m≤n)个不同的位置各是什么.【训练3】 (1)有7本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有7种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?解 (1)从7本不同的书中选3本送给3名同学,相当于从7个不同元素中任取3个元素的一个排列,所以共有765=210(种)不同的送法.(2)从7种不同的书中买3本书,这3本书并不要求都不相同,根据分步乘法计数原理知,共有777=343(种)不同的送法.一、素养落地1.通过本节课的学习,进一步提升数学抽象素养及数学运算素养.2.排列有两层含义:一是“取出元素”,二是“按照一定顺序排成一列”.这里“一定的顺序”是指每次取出的元素与它所排的“位置”有关,所以,取出的元素与“顺序”有无关系就成为判断问题是否为排列问题的标准.二、素养训练1.从1,2,3,4四个数字中,任选两个数做加、减、乘、除运算,分别计算它们的结果,在这些问题中,有几种运算可以看作排列问题( )A.1 B.3 C.2 D.4解析 因为加法和乘法满足交换律,所以选出两个数做加法和乘法时,结果与两数字位置无关,故不是排列问题,而减法、除法与两数字的位置有关,故是排列问题.答案 C2.从甲、乙、丙三人中选两人站成一排的所有站法为( )A.甲乙,乙甲,甲丙,丙甲B.甲乙丙,乙丙甲C.甲乙,甲丙,乙甲,乙丙,丙甲,丙乙D.甲乙,甲丙,乙丙解析 选出两人,两人的不同顺序都要考虑.答案 C3.某电视台一节目收视率很高,现要连续插播4个广告,其中2个不同的商业广告和2个不同的公益宣传广告,要求最后播放的必须是商业广告,且2个商业广告不能连续播放,则不同的播放方式有( )A.8种 B.16种C.18种 D.24种解析 可分三步:第一步,排最后一个商业广告,有2种;第二步,在前两个位置选一个排第二个商业广告,有2种;第三步,余下的两个排公益宣传广告,有2种.根据分步计数原理,不同的播放方式共有222=8(种).故选A.答案 A4.8种不同的菜种,任选4种种在不同土质的4块地上,有__________种不同的种法(用数字作答).解析 本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有8765=1 680(种).答案 1 6805.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,则一共可以表示______种不同的信号.解析 第1类,挂1面旗表示信号,有3种不同方法;第2类,挂2面旗表示信号,有32=6(种)不同方法;第3类,挂3面旗表示信号,有321=6(种)不同方法.根据分类加法计数原理,可以表示的信号共有3+6+6=15(种).答案 15基础达标一、选择题1.(多选题)下面问题中,不是排列问题的是( )A.由1,2,3三个数字组成无重复数字的三位数B.从40人中选5人组成篮球队C.从100人中选2人抽样调查D.从1,2,3,4,5中选2个数组成集合解析 选项A中组成的三位数与数字的排列顺序有关,选项B,C,D只需取出元素即可,与元素的排列顺序无关.答案 BCD2.甲、乙、丙三人排成一排去照相,甲不站在排头的所有排列种数为( )A.6 B.4 C.8 D.10解析 列“树状图”如下:故共有丙甲乙,丙乙甲,乙甲丙,乙丙甲4种排列方法.答案 B3.从2,3,5,7四个数中任选两个分别相除,则得到的不同结果有( )A.6个 B.10个 C.12个 D.16个解析 不同结果有43=12(个).答案 C4.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是( )A.9 B.10 C.18 D.20解析 lg a-lg b=lg ,从1,3,5,7,9中任取两个数分别记为a,b,共有54=20(种),其中lg =lg ,lg=lg ,故其可得到18种结果.答案 C5.四张卡片上分别标有数字“2”“0”“1”“1”,则由这四张卡片可组成不同的四位数的个数为( )A.6 B.9 C.12 D.24解析 组成的四位数列举如下:1 012,1 021,1 102,1 120,1 201,1 210,2 011,2 101,2 110,共9个.答案 B二、填空题6.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了__________条毕业留言(用数字作答).解析 根据题意,得4039=1 560,故全班共写了1 560条毕业留言.答案 1 5607.2020北京车展期间,某调研机构准备从5人中选3人去调查E1馆、E3馆、E4馆的参观人数,不同的安排方法种数为__________.解析 由题意可知,问题为从5个。












