
湖南省株洲市攸县湖南坳乡中学2018年高二数学文期末试卷含解析.docx
13页湖南省株洲市攸县湖南坳乡中学2018年高二数学文期末试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知全集,集合,,那么( )A. B. C. D.参考答案:A2. 双曲线的渐近线方程是( ) A. B. C. D.参考答案:A3. 在直角△ABC中,∠ACB=30°,∠B=90°,D为AC中点(左图),将∠ABD沿BD折起,使得AB⊥CD(右图),则二面角A﹣BD﹣C的余弦值为( )A. B. C. D.参考答案:A【考点】二面角的平面角及求法.【分析】由(1)的证明可得∠A′EF为二面角A﹣BD﹣C的平面角.过A作AO⊥面BCD,垂足为O.由于面AEF⊥面BCD,所以O在FE上,连BO交CD延长线于M,从而当AB⊥CD时,由三垂线定理的逆定理得BM⊥CM,由此可求得cos∠AEO=,利用互补得出二面角A﹣BD﹣C的余弦值为.【解答】解:过A作AE⊥BD,在原图延长角BC与F,过A作AO⊥面BCD,垂足为O.由于面AEF⊥面BCD,所以O在FE上,连BO交CD延长线于M,∵在△ABC中,∠ACB=30°,∠B=90°,D为AC中点,AB=,BD=AC,∴△ABD为等边三角形,∴BD⊥AE,BD⊥EF,∴∠AEF为二面角A﹣BD﹣C的平面角,过A作AO⊥面BCD,垂足为O,∵面AEF⊥面BCD,∴O在EF上,理解BO交CD延长线于M,当AB⊥CD时,由三垂线定理的逆定理可知:MB⊥CM,∴O为翻折之前的三角形ABD的中心,∴OE=AE,cos∠AEO=,∴cos∠AEF=,故选:A 4. 直线(为参数)和圆交于A,B两点,则AB的中点坐标为( )A. B. C. D.参考答案:D将直线参数方程代入圆方程得 ,所以线段的中点对应参数为 ,坐标为 ,选D. 5. 在中,角的对边分别为,且则最短边的边长等于A. B. C. D. 参考答案:D略6. 二项式的展开式的常数项为第( )项A. 17 B. 18 C. 19 D. 20参考答案:B7. 曲线 在点 处的切线与坐标轴围成的三角形面积为( )A、 B、 C、 D、 参考答案:A8. 已知复数,若是纯虚数,则实数等于A. B. C. D.参考答案:D9. 设定点,,动点满足,则点的轨迹是( )A.椭圆 B.椭圆或线段 C.线段 D.无法判断参考答案:B略10. 设命题P:?x∈R,x2+2>0.则¬P为( )A. B.C. D.?x∈R,x2+2≤0参考答案:B【考点】命题的否定.【分析】根据全称命题的否定是特称命题进行判断即可.【解答】解:命题是全称命题,则命题的否定是特称命题,即¬P:,故选:B【点评】本题主要考查含有量词的命题的否定,比较基础.二、 填空题:本大题共7小题,每小题4分,共28分11. 设函数.若对任意实数,不等式恒成立,则 ▲ 参考答案: 12. 随机变量ξ的分布列为则ξ为奇数的概率为________.参考答案:13. 一球内切于底面半径为,高为3的圆锥,则内切球半径是 ;内切球与该圆锥的体积之比为 .参考答案:1,.【考点】球的体积和表面积;旋转体(圆柱、圆锥、圆台).【分析】由等面积可得内切球半径,利用体积公式求内切球与该圆锥的体积之比.【解答】解:设球的半径为r,则由等面积可得,∴r=1.内切球与该圆锥的体积之比为=.故答案为1,.14. 在等差数列中,若,则该数列的前2009项的和是 .参考答案:2009 略15. 若双曲线上一点P到其左焦点的距离为5,则点P到右焦点的距离为 .参考答案:9考点: 双曲线的简单性质.专题: 计算题;圆锥曲线的定义、性质与方程.分析: 求出双曲线的a,b,c,运用双曲线的定义,求得|PF2|=1或9,讨论P在左支和右支上,求出最小值,即可判断P的位置,进而得到所求距离.解答: 解:双曲线=1的a=2,b=2,c==4,设左右焦点为F1,F2.则有双曲线的定义,得||PF1|﹣|PF2||=2a=4,由于|PF1|=5,则有|PF2|=1或9,若P在右支上,则有|PF2|≥c﹣a=2,若P在左支上,则|PF2|≥c+a=6,故|PF2|=1舍去;由于|PF1|=5<c+a=6,则有P在左支上,则|PF2|=9.故答案为:9点评: 本题考查双曲线的方程和定义,考查分类讨论的思想方法,考查运算能力,属于基础题和易错题.16. 有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.参考答案:1和3.根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又加说:“我与乙的卡片上相同的数字不是2”;所以甲的卡片上写的数字不是1和2,这与已知矛盾;所以甲的卡片上的数字是1和3. 17. 是的___________________条件; 参考答案:充分不必要三、 解答题:本大题共5小题,共72分。
解答应写出文字说明,证明过程或演算步骤18. (本小题满分10分)已知函数(为常数,且)的图象过点.(1)求实数的值;(2)若函数,试判断函数的奇偶性,并说明理由参考答案:解(1)把的坐标代入,得解得.(2)由(1)知,所以.此函数的定义域为R,又,所以函数为奇函数19. 已知m=(cosωx+sinωx,cosωx),n=(cosωx-sinωx,2sinωx),其中ω>0,设函数f(x)=m·n,且函数f(x)的周期为π.(1)求ω的值;(2)在△ABC中,a,b,c分别是角A,B,C的对边,且a,b,c成等差数列.当f(B)=1时,判断△ABC的形状.参考答案:(1)∵m=(cosωx+sinωx,cosωx),n=(cosωx-sinωx,2sinωx)(ω>0)∴f(x)=m·n=cos2ωx-sin2ωx+2cosωxsinωx=cos2ωx+sin2ωx.∴f(x)=2sin(2ωx+).∵函数f(x)的周期为π,∴T==π.∴ω=1.(2)在△ABC中,f(B)=1,∴2sin(2B+)=1.∴sin(2B+)=.又∵0












