
广西合浦县2024-2025学年数学九上开学学业质量监测试题【含答案】.doc
25页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………广西合浦县2024-2025学年数学九上开学学业质量监测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,△ABC和△DCE都是等边三角形,点B、C、E在同一条直线上,BC=1,CE=2,连接BD,则BD的长为( )A.3 B.2 C.2 D.2、(4分)如图,将△ABC沿着水平方向向右平移后得到△DEF,若BC=3,CE=2,则平移的距离为( )A.1 B.2 C.3 D.43、(4分)如图,F是菱形ABCD的边AD的中点,AC与BF相交于E,于G,已知,则下列结论:;;:其中正确的结论是 A. B. C. D.4、(4分) “龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是( )A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟5、(4分)在平面直角坐标系中,下列函数的图象经过原点的是( )A. B. C. D.6、(4分)下列语句正确的是( )A.的平方根是6 B.负数有一个平方根C.的立方根是 D.8的立方根是27、(4分)若分式方程=2+有增根,则a的值为( )A.4 B.2 C.1 D.08、(4分)如图,正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形,则∠AED=( )A.60° B.65° C.70° D.75°二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是 (填“甲”或“乙“).10、(4分)如图,已知∠BAC=120º,AB=AC,AC的垂直平分线交BC于点D,则∠ADB=_______; 11、(4分)如图,在中,,点是边的中点,点在边上运动,若平分的周长时,则的长是_______.12、(4分)计算的结果是______________。
13、(4分)一次函数的图象与轴交于点________;与轴交于点______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,每个小正方形的边长都为1,四边形ABCD的顶点都在小正方形的顶点上.(1)求四边形ABCD的面积;(2)∠BCD是直角吗?说明理由.15、(8分)四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.求∠BAD的度数;16、(8分)分解因式:17、(10分)如图,在平面直角坐标系中,O为坐标原点,直线l1:y=kx+4与y轴交于点A,与x轴交于点B.(1)请直接写出点A的坐标:______;(2)点P为线段AB上一点,且点P的横坐标为m,现将点P向左平移3个单位,再向下平移4个单位,得点P′在射线AB上.①求k的值;②若点M在y轴上,平面内有一点N,使四边形AMBN是菱形,请求出点N的坐标;③将直线l1绕着点A顺时针旋转45°至直线l2,求直线l2的解析式.18、(10分)如图,在四边形中,,点为的中点,,交于点,,求的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)几个同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设原参加旅游的同学有x人,则根据题意可列方程___________________________ .20、(4分)若关于的一元二次方程有两个不相等的实数根,则的取值范围是________.21、(4分)如图,于,于,且,,,则_______.22、(4分)有8个数的平均数是11,还有12个数的平均数是12,则这20个数的平均数是_________.23、(4分)小明从A地出发匀速走到B地.小明经过(小时)后距离B地(千米)的函数图像如图所示.则A、B两地距离为_________千米.二、解答题(本大题共3个小题,共30分)24、(8分)已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.25、(10分)如图,四边形ABCD是正方形,点G是BC上一点,DE⊥AG于点E,BF∥DE且交AG于点F.(1)求证:AE=BF;(2)当∠BAG=30°,且AB=2时,求EF-FG的值.26、(12分)如图,等腰直角三角形OAB的三个定点分别为、、,过A作y轴的垂线.点C在x轴上以每秒的速度从原点出发向右运动,点D在上以每秒的速度同时从点A出发向右运动,当四边形ABCD为平行四边形时C、D同时停止运动,设运动时间为.当C、D停止运动时,将△OAB沿y轴向右翻折得到△,与CD相交于点E,P为x轴上另一动点.(1)求直线AB的解析式,并求出t的值.(2)当PE+PD取得最小值时,求的值.(3)设P的运动速度为1,若P从B点出发向右运动,运动时间为,请用含的代数式表示△PAE的面积.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】作DF⊥CE于F,构建两个直角三角形,运用勾股定理逐一解答即可.【详解】过D作DF⊥CE于F,根据等腰三角形的三线合一,得:CF=1,在直角三角形CDF中,根据勾股定理,得:DF2=CD2-CF2=22-12=3,在直角三角形BDF中,BF=BC+CF=1+1=2,根据勾股定理得:BD=,故选D.本题考查了等边三角形的性质,勾股定理等,正确添加辅助线、熟练应用相关的性质与定理是解题的关键.2、A【解析】根据图形可得:线段BE的长度即是平移的距离,又BC=3,EC=2,∴BE=3−2=1.故选A.3、A【解析】证=,可得易证△AEF≌△AEG(SAS),所以,∠AFE=∠AGE,所以,;由=,可证=,连接BD,易证△ABF≌△BAO,可得,BF=AO,所以,AC=2BF;同理,可证△BOE≌△BGF,可得,OE=EG,所以,CE=CO+OE=BF+EG.【详解】因为,四边形ABCD是菱形,所以,,AB=AD=CD=BC,所以,=,所以,因为,所以,=,又因为,所以,,AG=,又因为F是菱形ABCD的边AD的中点,所以,AF=,所以,AF=AG,所以,易证△AEF≌△AEG(SAS),所以,∠AFE=∠AGE,所以,,所以,由=,可证=,连接BD,易证△ABF≌△BAO,所以,BF=AO,所以,AC=2BF,同理,可证△BOE≌△BGF,所以,OE=EG,所以,CE=CO+OE=BF+EG,综合上述,正确故选:A此题考查了菱形的性质、全等三角形的判定与性质及等边三角形的判定与性质,综合的知识点较多,注意各知识点的融会贯通,难度一般.4、D【解析】分析:根据图象得出相关信息,并对各选项一一进行判断即可.详解:由图象可知,在赛跑中,兔子共休息了:50-10=40(分钟),故A选项错误;乌龟跑500米用了50分钟,平均速度为:(米/分钟),故B选项错误;兔子是用60分钟到达终点,乌龟是用50分钟到达终点,兔子比乌龟晚到达终点10分钟,故C选项错误;在比赛20分钟时,乌龟和兔子都距起点200米,即乌龟追上兔子用了20分钟,故D选项正确.故选D.点睛:本题考查了从图象中获取信息的能力.正确识别图象、获取信息并进行判断是解题的关键.5、C【解析】根据函数图象过原点,则必须满足(0,0)点在图象上,代入计算看是否等式成立即可.【详解】解:要使图象过原点,则必须满足(0,0)在图象上代入计算可得:A 代入(0,0)可得: ,明显等式不成立,故A的曲线不过原点;B 为反比例函数肯定不过原点,故B的曲线不过原点;C代入(0,0)可得: ,明显等式成立,故C的直线线过原点;D代入(0,0)可得: ,明显等式不成立,故D的直线不过原点;故选C.本题主要考查点是否在图象上,如果点在图象上,则必须满足图象所在的解析式.6、D【解析】根据平方根和立方根的定义、性质求解可得.【详解】A、62的平方根是±6,此选项错误;B、负数没有平方根,此选项错误;C、(-1)2的立方根是1,此选项错误;D、8的立方根是2,此选项正确;故选:D.本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;1的平方根是1;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,1的立方根式1.7、A【解析】分式方程无解有两种可能,一种是转化为的整式方程本身没有解,一种是整式方程的解使分式方程的分母为0.【详解】原式可化为,因为分式方程无解,即等式不成立或无意义,当时,方程无意义,代入求得.理解无解的含义是解题的关键.8、D【解析】由题意可证△ABF≌△ADE,可得∠BAF=∠DAE=15°,可求∠AED=75°.【详解】∵四边形ABCD是正方形,∴AB=AD,∠B=∠C=∠D=∠DAB=90°,∵△AEF是等边三角形,∴AE=AF,∠EAF=60°,∵AD=AB,AF=AE,∴△ABF≌△ADE(HL),∴∠BAF=∠DAE==15°,∴∠AED=75°,故选D.本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,熟练运用这些性质和判定解决问题是本题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、乙【解析】解:∵S甲2=2,S乙2=1.5,∴S甲2>S乙2,∴乙的射击成绩较稳定.故答案为乙.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(xn﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.10、60【解析】先根据等腰三角形的性质求出∠C的度数,再由线段垂直平分线的性质可知∠C=∠CAD,根据三角形内角与外角的关系即可求解.【详解】解:∵∠BAC=120°,AB=AC,∴∠C= ==30°,∵AC的垂直平分线交BC于D,∴AD=CD,∴∠C=∠CAD=30°,∵∠ADB是△ACD的外角,∴∠ADB=∠C+∠CAD=30°+30°=60°.故答案为60°.本题主要考查线段垂直平分线的性质,等腰三角形的性质,熟记知识点是解题的关键.11、【解析】延长CA至M,使AM=AB,连接BM,作AN⊥BM于N,由DE平分△ABC的周长,又CD=DB,得。












