
河南省汤阴县2025届九年级数学第一学期开学经典模拟试题【含答案】.doc
21页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………河南省汤阴县2025届九年级数学第一学期开学经典模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x的值为( )A.1 B.4 C.2 D.-0.52、(4分)一个直角三角形的两边长分别为,则第三边长可能是( )A. B. C.或2 D.3、(4分)一元二次方程根的情况为( )A.有两个相等的实数根 B.有两个正实数根C.有两个不相等的实数根 D.有两个负实数根4、(4分)计算()3÷的结果是( )A. B.y2 C.y4 D.x2y25、(4分)以下图形中,既是中心对称图形,又是轴对称图形的是( )A.三角形 B.菱形 C.等腰梯形 D.平行四边形6、(4分)如果分式有意义,则a的取值范围是( )A.a为任意实数出 B.a=3 C.a≠0 D.a≠37、(4分)有位同学参加歌咏比赛,所得的分数互不相同,取得分前位同学进入决赛,小明知道自己的分数后,要判断自己能否进入决赛,他只需知道这位同学得分的( )A.平均数 B.中位数 C.众数 D.方差8、(4分)某体育馆准备重新铺设地面,已有一部分正三角形的地砖,现要购买另一种不同形状的正多边形地砖与正三角形在同一顶点处作平面镶嵌(正多边形的边长相等),则该体育馆不应该购买的地砖形状是( )A.正方形 B.正六边形 C.正八边形 D.正十二边形二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)为了考察甲、乙两块地小麦的长势,分别从中随机抽出10株苗,测得苗高如图所示.若和 分别表示甲、乙两块地苗高数据的方差,则________.(填“>”、“<”或“=”). 10、(4分)已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=_____.11、(4分)如图,已知等边△ABC的边长为10,P是△ABC内一点,PD平行AC,PE平行AD,PF平行BC,点D,E,F分别在AB,BC,AC上,则PD+PE+PF= _______________.12、(4分)一组数据3,2,4,5,2的众数是______.13、(4分)甲、乙两家人,相约周末前往中梁国际慢城度周末,甲、乙两家人分别从上桥和童家桥驾车同时出发,匀速前进,且甲途经童家桥,并以相同的线路前往中梁国际慢城. 已知乙的车速为30千米/小时,设两车之间的里程为y(千米),行驶时间为x(小时),图中的折线表示从两家人出发至甲先到达终点的过程中y(千米)与x(小时)的函数关系,根据图中信息,甲的车速为_______千米/小时.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF,求证:四边形ADCF是菱形.15、(8分)如图所示,AE是∠BAC的角平分线,EB⊥AB于B,EC⊥AC于C,D是AE上一点,求证:BD=CD.16、(8分)如图1,□ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的□A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.17、(10分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)求y关于x的函数解析式;(2)每分钟进水、出水各多少升?18、(10分)求不等式(2x﹣1)(x+1)>0的解集.解:根据“同号两数相乘,积为正”可得:①或 ②.解①得x>;解②得x<﹣1.∴不等式的解集为x>或x<﹣1.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣1)(x+1)<0的解集.(2)求不等式≥0的解集.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在平面直角坐标系xOy中,菱形AOBC的边长为8,∠AOB=60°. 点D是边OB上一动点,点E在BC上,且∠DAE=60°.有下列结论:①点C的坐标为(12,);②BD=CE;③四边形ADBE的面积为定值;④当D为OB的中点时,△DBE的面积最小.其中正确的有_______.(把你认为正确结论的序号都填上)20、(4分)分解因式:_____.21、(4分)如图,在平行四边形 ABCD 中, AD = 2 AB ;CF 平分 ÐBCD 交 AD 于 F ,作 CE ^ AB , 垂足 E 在边 AB 上,连接 EF .则下列结论:① F 是 AD 的中点; ② S△EBC = 2S△CEF;③ EF = CF ; ④ ÐDFE = 3ÐAEF .其中一定成立的是_____.(把所有正确结论的序号都填在横线上) 22、(4分)用反证法证明命题“在直角三角形中,至少有一个锐角不大于 45°”时第一步先假设所求证的结论不成立,即问题表述为______.23、(4分)一次函数,若y随x的增大而增大,则的取值范围是 .二、解答题(本大题共3个小题,共30分)24、(8分)如图,点A在的边ON上,于点B,,于点E,,于点C.求证:四边形ABCD是矩形.25、(10分)如图,在□ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于点F.(1)若∠F=20°,求∠A的度数;(2)若AB=5,BC=8,CE⊥AD,求□ABCD的面积.26、(12分)如图,直线y1=2x-2的图像与y轴交于点A,直线y2=-2x+6的图像与y轴交于点B,两者相交于点C.(1)方程组的解是______;(2)当y1>0与y2>0同时成立时,x的取值范围为_____;(3)求△ABC的面积;(4)在直线y1=2x-2的图像上存在异于点C的另一点P,使得△ABC与△ABP的面积相等,请求出点P的坐标.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】根据一次函数图象可得一次函数y=ax+b的图象经过(4,1)点,进而得到方程的解.【详解】根据图象可得,一次函数y=ax+b的图象经过(4,1)点,因此关于x的方程ax+b=1的解x=4,故选B.本题考查了一次函数与方程,关键是正确利用数形结合的方法从图象中找到正确答案.2、C【解析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边8既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】解:设第三边为x,①当8是直角边,则62+82=x2解得x=10,②当8是斜边,则62+x2=82,解得x=2 .∴第三边长为10或2.故选:C.本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.3、C【解析】根据方程的系数结合根的判别式,可得出△=8>0,由此即可得出原方程有两个不相等的实数根.【详解】解:∵在方程x2+2x-1=0中,△=22-4×1×(-1)=8>0,∴方程x2+2x-1=0有两个不相等的实数根.故选:C.本题考查根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.4、B【解析】根据分式的运算法则即可求出答案.【详解】解:原式= == ,故选:B.此题考查分式的运算及幂的运算,难度一般.5、B【解析】关于某条直线对称的图形叫轴对称图形.绕一个点旋转180度后所得的图形与原图形完全重合的图形叫做中心对称图形.【详解】解:A、三角形既不是中心对称图形,也不是轴对称图形;B、菱形既是中心对称图形,也是轴对称图形;C、等腰梯形是轴对称图形;D、平行四边形是中心对称图形.故选B.掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、D【解析】直接利用分式的分母不等于0,进而得出答案.【详解】解:分式有意义,则,解得:.故选:D.此题主要考查了分式有意义的条件,正确把握定义是解题关键.7、B【解析】由中位数的概念,即最中间一个或两个数据的平均数;可知9人成绩的中位数是第5名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于9个人中,第5名的成绩是中位数,故小明同学知道了自己的分数后,想知道自己能否进入决赛,需知道这9位同学的分数的中位数.故选:B.此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.8、C【解析】根据密铺的条件得,两多边形内角和必须凑出,进而判断即可.【详解】解:、正方形的每个内角是,,能密铺;、正六边形每个内角是,,能密铺;、正八边形每个内角是,与无论怎样也不能组成的角,不能密铺;、正十二边形每个内角是,,能密铺.故选:C.本题考查两种正多边形的镶嵌应符合多个内角度数和等于.二、填空题(本大题共5个小题,每小题4分,共20分)9、<【解析】方差用来计算每一个变量(观察值)与总体均数之间的差异,所以从图像看苗高的波动幅度,可以大致估计甲、乙两块地苗高数据的方差.【详解】解:由图可知,甲、乙两块地的苗高皆在12cm上下波动,但乙的波动幅度比甲大,∴ 则 故答案为:<本题考查了方差,方差反映了数据的波动程度,方差越大,数据的波动越大,正确理解方差的含义是解题的关键.10、-2【解析】由正比例函数的定义可得m2﹣2=2,且m﹣2≠2.【详解】解:由正比例函数的定义可得:m2﹣2=2,且m﹣2≠2,解得:m=﹣2,故答案为:﹣2.本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠2.11、1【解析】延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得平行四边形PGBD和平行四边形EPHC,再根据平行四边形及等边三角形的性质得到PD=DH,PE=HC,PF=BD,故可求出PD+PE+PF的长.【详解】如图,延长EP、FP分别交AB、BC于G、H,。












