
贵州省清镇市2025届九上数学开学达标检测模拟试题【含答案】.doc
22页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………贵州省清镇市2025届九上数学开学达标检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列调查中,适合进行普查的是( )A.一个班级学生的体重B.我国中学生喜欢上数学课的人数C.一批灯泡的使用寿命D.《新闻联播》电视栏目的收视率2、(4分)为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是( )A.∠BCA=45° B.AC=BDC.BD的长度变小 D.AC⊥BD3、(4分)函数的图象不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限4、(4分)二次根式中的取值范围是( )A. B. C. D.5、(4分)甲、乙、丙、丁4对经过5轮选拔,平均分都相同,而方差依次为0.1、0.8、1.6、1.1.那么这4队中成绩最稳定的是( )A.甲队 B.乙队 C.丙队 D.丁队6、(4分)如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为( ).A. B. C. D.7、(4分)已知一次函数y=(m+1)x+m2﹣1的图象经过原点,则m的值为(( )A.0 B.﹣1 C.1 D.±18、(4分)若一个多边形的每个内角都相等,且都为160度,则这个多边形的内角和是( )度A.2520 B.2880 C.3060 D.3240二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,矩形ABCD中,,,CE是的平分线与边AB的交点,则BE的长为______.10、(4分)计算:(-0.75)2015 × = _____________.11、(4分)Rt△ABC中,∠C=90°,∠B=30°,则AC与AB两边的关系是_____.12、(4分)若一元二次方程(为常数)有两个相等的实数根,则______.13、(4分)计算:_________.三、解答题(本大题共5个小题,共48分)14、(12分)某机动车出发前油箱内有42升油,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(升)与行驶时间t(时)之间的函数关系如图所示.回答下列问题:(1)机动车行驶几小时后,在途中加油站加油?(2)求加油前油箱剩余油量Q与行驶时间t的函数关系,并求自变量t的取值范围;(3)中途加油多少升?(4)如果加油站距目的地还有320千米,车速为60千米/时,要到达目的地,油箱中的油是否够用?请说明理由.15、(8分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.16、(8分)如图,每个小正方形的边长都为1,四边形ABCD的顶点都在小正方形的顶点上.(1)求四边形ABCD的面积;(2)∠BCD是直角吗?说明理由.17、(10分)如图,已知在平面直角坐标系中,正比例函数与一次函数的图象相交于点,过点作轴的垂线,分别交正比例函数的图像于点B,交一次函数的图象于点C,连接OC.(1)求这两个函数解析式.(2)求的面积.(3)在坐标轴上存在点,使是以为腰的等腰三角形,请直接写出点的坐标。
18、(10分)鞋子的“鞋码”和鞋长(cm)是一次函数关系,下表是几组“鞋码”与鞋长的对应数值:鞋 长15182326鞋 码20263642(1)设鞋长为,“鞋码”为,求与之间的函数关系式;(2)如果你需要的鞋长为24cm,那么应该买多大码的鞋?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若方程的两根为,,则________.20、(4分)如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为_____.21、(4分)将直线平移后经过点(5,),则平移后的直线解析式为______________.22、(4分)关于x的方程的有两个相等的实数根,则m的值为________.23、(4分)小数0.00002l用科学记数法表示为_____.二、解答题(本大题共3个小题,共30分)24、(8分)近年,教育部多次明确表示,今后中小学生参加体育活动情况、学生体质健康状况和运动技能等级纳入初中、高中学业水平考试,纳入学生综合素质评价体系.为更好掌握学生体育水平,制定合适的学生体育课内容,某初级中学对本校初一,初二两个年级的学生进行了体育水平检测.为了解情况,现从两个年级抽样调查了部分学生的检测成绩,过程如下:(收集数据)从初一、初二年级分别随机抽取了20名学生的水平检测分数,数据如下:初一年级8858449071889563709081928484953190857685初二年级7582858576876993638490856485919668975788(整理数据)按如下分段整理样本数据:分段年级 0≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100初一年级a137b初二年级14285(分析数据)对样本数据边行如下统计:统计量年级 平均数中位数众数方差初一年级78c90284.6初二年级8185d126.4(得出结论)(1)根据统计,表格中a、b、c、d的值分别是 、 、 、 .(2)若该校初一、初二年级的学生人数分别为800人和1000人,则估计在这次考试中,初一、初二成绩90分以上(含90分)的人数共有 人.(3)根据以上数据,你认为 (填“初一“或“初二”)学生的体育整体水平较高.请说明理由(一条理由即可).25、(10分)如图,在中,对角线AC,BD交于点O,E是AD上任意一点,连接EO并延长,交BC于点F,连接AF,CE.(1)求证:四边形AFCE是平行四边形;(2)若,°,.①直接写出的边BC上的高h的值;②当点E从点D向点A运动的过程中,下面关于四边形AFCE的形状的变化的说法中,正确的是A.平行四边形→矩形→平行四边形→菱形→平行四边形B.平行四边形→矩形→平行四边形→正方形→平行四边形C.平行四边形→菱形→平行四边形→菱形→平行四边形D.平行四边形→菱形→平行四边形→矩形→平行四边形26、(12分)孝感市委市政府为了贯彻落实国家的“精准扶贫”战略部署,组织相关企业开展扶贫工作,博大公司为此制定了关于帮扶A、B两贫困村的计划.今年3月份决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗.已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:目的地费用车型A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总运费为y元;①试求出y与x的函数解析式;②若运往A村的鱼苗不少于108箱,请你写出使总运费最少的货车调配方案,并求出最少运费.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】根据具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查即可解答本题.【详解】A、调查一个班级学生的体重,人数较少,容易调查,因而适合普查,故选项正确;B、调查我国中学生喜欢上数学课的人数,因为人数太多,不容易调查,因而适合抽查,故选项错误;C、调查一批灯泡的使用寿命,调查具有普坏性,因而适合抽查,故选项错误;D、调查结果不是很重要,且要普查要用大量的人力、物力,因而不适合普查,应用抽查,故选项错误.故选A.本题考查抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选择,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、B【解析】根据矩形的性质即可判断;【详解】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选B.本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3、B【解析】根据k>0确定一次函数经过第一三象限,根据b<0确定与y轴负半轴相交,从而判断得解.【详解】解:一次函数y=x﹣2,∵k=1>0,∴函数图象经过第一三象限,∵b=﹣2<0,∴函数图象与y轴负半轴相交,∴函数图象经过第一三四象限,不经过第二象限.故选B.4、D【解析】根据二次根式有意义的条件可得出,再求x的取值范围即可.【详解】解:∵∴故选:D.本题考查的知识点是二次根式的定义,根据二次根式被开方数大于等于零解此题.5、A【解析】先比较四个队的方差的大小,根据方差的性质解答即可.【详解】解:甲、乙、丙、丁方差依次为0.1、0.8、1.6、1.1,所以这4队中成绩最稳定的是甲,故选:A.本题考查的是方差的性质,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6、C【解析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【详解】如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选C.本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求。












