
河南省漯河市2025届数学九上开学联考模拟试题【含答案】.doc
20页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………河南省漯河市2025届数学九上开学联考模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行A.8米 B.10米 C.12米 D.14米2、(4分)已知实数a在数轴上的位置如图所示,则化简的结果为( )A.1 B.﹣1 C.1﹣2a D.2a﹣13、(4分)如图,在平行四边形中,,平分交边于点,且,则的长为( )A.2 B. C.3 D.44、(4分)如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的和最小值为( )A. B.4 C.3 D.5、(4分)如图,一个四边形花坛ABCD,被两条线段MN, EF分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是S1、S2、S3、S4,若MN∥AB∥DC,EF∥DA∥CB,则有( )A.S1= S4 B.S1 + S4 = S2 + S3 C.S1 + S3 = S2 + S4 D.S1·S4 = S2·S36、(4分)不等式 的正整数解的个数是( )A.7个 B.6个 C.4个 D.0个7、(4分)在Rt△ABC中,∠C=90°,AC=4,AB=5,则cosA的值是( )A. B. C. D.8、(4分)已知a<b,下列不等关系式中正确的是( )A.a+3>b+3 B.3a>3b C.﹣a<﹣b D.﹣>﹣二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在平面直角坐标系中,点到坐标原点的距离是______.10、(4分)如图,经过平移后得到,下列说法错误的是( )A. B.C. D.11、(4分)若点P(3,2)在函数y=3x-b的图像上,则b=_________.12、(4分)如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为__________.13、(4分)若代数式在实数范围内有意义,则x的取值范围是_______.三、解答题(本大题共5个小题,共48分)14、(12分)(1)因式分解:x2y﹣2xy2+y3(2)解不等式组:15、(8分)如图所示,中,,、分别为、的中点,延长到,使.求证:四边形是平行四边形.16、(8分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13, AF=BD=5,求四边形AFBD的面积.17、(10分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.的三个顶点都在格点上,将绕点按顺时针方向旋转得到.(1)在正方形网格中,画出;(2)画出向左平移4格后的;(3)计算线段在变换到的过程中扫过区域的面积.18、(10分)如图,在四边形ABCD中,AB=AD=3,DC=4,∠A=60°,∠D=150°,试求BC的长度.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一组数据的平均数是则这组数据的方差为__________.20、(4分)已知是一次函数,则__________.21、(4分)甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为________.(填“>”或“<”)22、(4分)如图,在□ ABCD 中,E 为 BC 中点,DE、AC 交于 F 点,则=_______.23、(4分)若,则________.二、解答题(本大题共3个小题,共30分)24、(8分)已知函数的图象经过第四象限的点B(3,a),且与x轴相交于原点和点A(7,0)(1)求k、b的值;(2)当x为何值时,y>﹣2;(3)点C是坐标轴上的点,如果△ABC恰好是以AB为腰的等腰三角形,直接写出满足条件的点C的坐标25、(10分)如图,将的边延长至点,使,连接,,,交于点.(1)求证:;(2)若,求证:四边形是矩形.26、(12分)数257-512能被120整除吗?请说明理由.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】试题分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.如图,设大树高为AB=10米,小树高为CD=4米,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4米,EC=8米,AE=AB﹣EB=10﹣4=6米,在Rt△AEC中,(米).故选B.2、A【解析】先由点a在数轴上的位置确定a的取值范围及a-1的符号,再代入原式进行化简即可【详解】由数轴可知0<a<1,所以,=1,选A。
此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a的大小3、D【解析】利用平行四边形的性质以及角平分线的性质得出,进而得出求出即可.【详解】解:在中,平分交于点,,,,,,,,∴DE=AD-AE=1∴AB =DE=1.故选:D.此题主要考查了平行四边形的性质以及角平分线的性质,得出是解题关键.4、B【解析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为16,可求出AB的长,从而得出结果.【详解】解:设BE与AC交于点P',连接BD.∵点B与D关于AC对称,∴P'D=P'B,∴P'D+P'E=P'B+P'E=BE最小.∵正方形ABCD的面积为16,∴AB=1,又∵△ABE是等边三角形,∴BE=AB=1.故选:B.本题考查的是正方形的性质和轴对称-最短路线问题,熟知“两点之间,线段最短”是解答此题的关键.5、D【解析】由于在四边形中,MN∥AB∥DC,EF∥DA∥CB,因此MN、EF把一个平行四边形分割成四个小平行四边形.可设MN到DC的距离为h1,MN到AB的距离为h2,根据AB=CD,DE=AF,EC=FB及平行四边形的面积公式即可得出答案.【详解】解:∵MN∥AB∥DC,EF∥DA∥CB,∴四边形ABCD,四边形ADEF,四边形BCEF,红、紫、黄、白四边形都为平行四边形,∴AB=CD,DE=AF,EC=BF.设MN到DC的距离为h1,MN到AB的距离为h2,则S1=DE•h1,S2=AF•h2,S3=EC•h1,S4=FB•h2,因为DE,h1,FB,h2的关系不确定,所以S1与S4的关系无法确定,故A错误;S1+S4=DE•h1+FB•h2=AF•h1+FB•h2,S2+S3=AF•h2+EC•h1=AF•h2+FB•h1,故B错误;S1+S3=CD•h1,S2+S4=AB•h2,又AB=CD,而h1不一定与h2相等,故C错误;S1·S4=DE•h1•FB•h2=AF•h1•FB•h2,S2·S3=AF•h2•EC•h1=AF•h2•FB•h1,所以S1·S4=S2·S3,故D正确;故选:D.本题考查平行四边形的判定与性质,注意掌握平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=a•h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高.6、B【解析】先解不等式求得不等式的解集,再确定正整数解即可.【详解】3(x+1)>2(2x+1)-63x+3>4x+2-63x-4x>2-6-3-x>-7x<7∴不等式的正整数解为1、2、3、4、5、6,共6个.故选B.本题考查了求一元一次不等式的正整数解,正确求得不等式的解集是解决本题的关键.7、D【解析】根据余弦的定义计算即可.【详解】解:如图,在Rt△ABC中,,故选:D.本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.8、D【解析】根据不等式的性质逐一判断即可.【详解】A:不等式两边都加3,不等号的方向不变,原变形错误,故此选项不符合题意;B:不等式两边都乘以3,不等号的方向不变,原变形错误,故此选项不符合题意;C:不等式两边都乘﹣1,不等号的方向改变,原变形错误,故此选项不符合题意;D不等式两边都除以﹣2,不等号的方向改变,原变形正确,故此选项符合题意;故选:D.本题主要考查了不等式的性质,熟记不等式在两边都乘除负数时,不等式符号需要改变方向是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、5【解析】根据勾股定理解答即可.【详解】点P到原点O距离是.故答案为:5此题考查勾股定理,关键是根据勾股定理得出距离.10、D【解析】根据平移的性质,对应点的连线互相平行且相等,平移变换只改变图形的位置不改变图形的形状与大小对各小题分析判断即可得解.【详解】A、AB∥DE,正确;B、,正确;C、AD=BE,正确;D、,故错误,故选D.本题主要考查了平移的性质,是基础题,熟记性质是解题的关键.11、1【解析】∵点P(3,2)在函数y=3x-b的图象上,∴2=3×3-b,解得:b=1.故答案是:1.12、【解析】设BE=x,则CE=BC﹣BE=16﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=16﹣x,在Rt△ABE中,AB2+BE2=AE2,即82+x2=(16﹣x)2,解得x=6,∴AE=16﹣6=10,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=10,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=8,AH=BE=6,∴FH=AF﹣AH=10﹣6=4,在Rt△EFH中,EF= = =.故答案为 .点睛:本题考查矩形的翻折,解题时要注意函数知识在生产生活中的实际应用,注意用数学知识解决实际问题能力的培养.13、【解析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:∵在实数范围内有意义,∴x-1≥2,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2.三、解答题(本大题共5个小题,共48分)14、(1)y(x﹣y)2;(2)﹣3<x<2【解析】(1)由题意对原式提取公因式,再利用完全平方公式分解即可;(2)根据题意分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:(1)原式=y(x2﹣2xy+y2)。





![河南新冠肺炎文件-豫建科[2020]63号+豫建科〔2019〕282号](http://img.jinchutou.com/static_www/Images/s.gif)






