
甘肃省庆阳市第九中学2024学年数学八年级上学期期末达标检测试题含解析.doc
17页2024学年八年级上学期数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内2.答题时请按要求用笔3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题(每题4分,共48分)1.若实数x,y,z满足,则下列式子一定成立的是( )A.x+y+z=0 B.x+y-2z=0 C.y+z-2x=0 D.z+x-2y=02.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=( )A.80° B.60° C.50° D.40°3.下列四种垃圾分类回收标识中,是轴对称图形的是( )A. B.C. D.4.下列四张扑克牌中,左旋转后还是和原来一样的是( )A. B. C. D.5.点P(-2,-3)关于x轴的对称点为( )A. B. C. D.6.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为( )A.15° B.17.5° C.20° D.22.5°7.如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为( )A. B. C. D.8.如果从某个多边形的一个顶点出发,可以作2条对角线,则这个多边形的内角和是( )A.360° B.540° C.720° D.900°9.如图,在中,线段AB的中垂线交AB于点D,交AC于点E,AC=14,的周长是24,则BC的长为( )A.10 B.11 C.14 D.1510.若的结果中不含项,则的值为( )A.2 B.-4 C.0 D.411.把△ABC各顶点的横坐标都乘以﹣1,纵坐标都不变,所得图形是下列答案中的( )A. B.C. D.12.如图,已知点A(1,-1),B(2,3),点P为x轴上一点,当|PA-PB|的值最大时,点P的坐标为( )A.(-1,0) B.(,0) C.(,0) D.(1,0)二、填空题(每题4分,共24分)13.如图,点E在边DB上,点A在内部,∠DAE=∠BAC=90°,AD=AE,AB=AC,给出下列结论,其中正确的是_____(填序号)①BD=CE;②∠DCB=∠ABD=45°;③BD⊥CE;④BE2=2(AD2+AB2).14.如图,点E为∠BAD和∠BCD平分线的交点,且∠B=40°,∠D=30°,则∠E=_____.15.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行.直线沿轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图1中的点的坐标为__________,图2中的值为__________.16.已知2m=a,4n=b,m,n为正整数,则23m+4n=_____.17.若式子4x2-mx+9是完全平方式,则m的值为__________________.18.分解因式:ab2﹣4ab+4a= .三、解答题(共78分)19.(8分)如图,AB∥CD,直线EF分别交直线AB、CD于点M、N,MG平分∠EMB,MH平分∠CNF,求证:MG∥NH.20.(8分)如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O.给出下列3个条件:①∠EBO=∠DCO;②AE=AD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定ΔABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.21.(8分)因式分解(1)a3﹣16a;(2)8a2﹣8a3﹣2a22.(10分)如图,已知等腰顶角.(1)在AC上作一点D,使(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:是等腰三角形.23.(10分)△ABC在平面直角坐标系中的位置如图所示.A(2,3),B(3,1),C(﹣2,﹣2)三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1;(2)直接写出△ABC关于x轴对称的△A2B2C2的各点坐标;(3)求出△ABC的面积.24.(10分)军运会前某项工程要求限期完成,甲队独做正好按期完成,乙队独做则要误期4天,现两队合作3天后,余下的工程再由乙队独做,比限期提前一天完成.(1)请问该工程限期是多少天?(2)已知甲队每天的施工费用为1000元,乙队每天的施工费用为800元,要使该项工程的总费用不超过7000元,乙队最多施工多少天?25.(12分)一辆货车从甲地匀速驶往乙地,到达乙地停留一段时间后,沿原路以原速返回甲地.货车出发一段时间后,一辆轿车以的速度从甲地匀速驶往乙地.货车出发时,两车在距离甲地处相遇,货车回到甲地的同时轿车也到达乙地.货车离甲地的距离、轿车离甲地的距离分别与货车所用时间之间的函数图像如图所示. (1)货车的速度是______,的值是______,甲、乙两地相距______;(2)图中点表示的实际意义是:______.(3)求与的函数表达式,并求出的值;(4)直接写出货车在乙地停留的时间.26.先化简,再求值.,从这个数中选取一个合适的数作为的值代入求值.参考答案一、选择题(每题4分,共48分)1、D【解析】∵(x﹣z)2﹣4(x﹣y)(y﹣z)=1,∴x2+z2﹣2xz﹣4xy+4xz+4y2﹣4yz=1,∴x2+z2+2xz﹣4xy+4y2﹣4yz=1,∴(x+z)2﹣4y(x+z)+4y2=1,∴(x+z﹣2y)2=1,∴z+x﹣2y=1.故选D.2、D【分析】首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.【详解】解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣100°)÷2=40°,∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B=40°,故选D.3、D【分析】根据轴对称图形的概念即可解决本题.【详解】由轴对称图形概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,叫做轴对称图形能够判断出D为轴对称图形.故答案选择D【点睛】本题考查了轴对称图形概念,难度系数不高,解题关键在于正确理解轴对称图形概念.4、C【解析】根据中心对称图形的定义进行判断可得答案.【详解】解:根据中心对称图形的定义,左旋转后还是和原来一样的是只有C.故选C.【点睛】此题目要考查了中心对称图形的相关定义:一个图形绕着中心点旋转后能与自身重合,我们把这种图形叫做中心对称图形,这个中心点称为对称中心.5、D【分析】关于x轴对称的点,横坐标不变,纵坐标变为相反数【详解】∵点P(-2,-3), ∴关于x轴的对称点为(-2,3). 故选D.【点睛】此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.6、A【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【详解】解答:解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选A.【点睛】点评:本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.7、C【分析】根据多边形的内角和=180°(n-2),其中n为正多边形的边数,计算即可【详解】解:正六边形的内角和为:180°×(6-2)=720°故选C.【点睛】此题考查的是求正六边形的内角和,掌握多边形的内角和公式是解决此题的关键.8、B【分析】根据从多边形的一个顶点可以作对角线的条数公式求出边数,然后根据多边形的内角和公式列式进行计算即可得解.【详解】∵多边形从一个顶点出发可引出2条对角线,∴,解得:,∴内角和.故选:B.【点睛】本题考查了多边形的内角和公式,多边形的对角线的公式,求出多边形的边数是解题的关键.9、A【分析】根据线段垂直平分线的性质即可得出答案.【详解】DE是线段AB的中垂线AE=BEAC=14BE+CE=AE+CE=AC=14的周长是24,即BC+BE+CE=24BC=24-(BE+CE)=10故选A.【点睛】本题考查了线段垂直平分线的性质定理,熟练掌握性质定理是解题的关键.10、D【分析】由的结果中不含项,可知,结果中的项系数为0,进而即可求出答案.【详解】∵==,又∵的结果中不含项,∴1-k=0,解得:k=1.故选D.【点睛】本题主要考查多项式与多项式的乘法法则,利用法则求出结果,是解题的关键.11、A【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),关于y轴的对称点的坐标是(﹣x,y),三个顶点坐标的横坐标都乘以﹣1,并保持纵坐标不变,就是横坐标变成相反数.即所得到的点与原来的点关于y轴对称.【详解】解:根据轴对称的性质,知将△ABC的三个顶点的横坐标乘以﹣1,就是把横坐标变成相反数,纵坐标不变,因而是把三角形的三个顶点以y轴为对称轴进行轴对称变换.所得图形与原图形关于y轴对称.故选A.【点睛】本题主要考查了关于y轴对称点的性质,正确应用坐标判断两点关于y轴对称的方法:横坐标互为相反数,纵坐标相同是解题关键.12、B【分析】由题意作A关于x轴对称点C,连接BC并延长,BC的延长线与x轴的交点即为所求的P点;首先利用待定系数法即可求得直线BC的解析式,继而求得点P的坐标.【详解】解:作A关于x轴对称点C,连接BC并延长交x轴于点P,∵A(1,-1),∴C的坐标为(1, 1),连接BC,设直线BC的解析式为:y=kx+b,∴,解得,∴直线BC的解析式为:y=2x-1,当y=0时,x=,∴点P的坐标为:(,0),∵当B,C,P不共线时,根据三角形三边的关系可得:|PA-PB|=|PC-PB|<BC,∴此时|PA-PB|=|PC-PB|=BC取得最大值.故选:B.【点睛】本题考查轴对称、待定系数法求一次函数的解析式以及点与一次函数的关系.此题难度较大,解题的关键是找到P点,注意数形结合思想与方程思想的应用.二、填空题(每题4分,共24分)13、①③【分析】①由已知条件证明DAB≌EAC即可;②由①可得ABD=ACE<45°,DCB>45°;③由ECB+EBC=ABD+ECB+ABC=ACE+ECB+ABC =45°+45°=90°可判断③;④由BE1=BC1-EC1=1AB1-(CD1﹣DE1)=1AB1-C。
