
2021-2022学年度北师大版八年级数学下册第四章因式分解章节练习练习题(名师精选).docx
16页北师大版八年级数学下册第四章因式分解章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式能用公式法因式分解的是( ).A. B. C. D.2、下列各式的因式分解中正确的是( )A. B.C. D.3、下列等式从左到右的变形,属于因式分解的是( )A. ﹣2x﹣1= B.(a+b)(a﹣b)=C.﹣4x+4= D.﹣1=4、下列各式中,正确的因式分解是( )A.B.C.D.5、下列因式分解正确的是( )A.a2+1=a(a+1) B.C.a2+a﹣5=(a﹣2)(a+3)+1 D.6、下列等式中,从左到右的变形是因式分解的是( )A.a(a-3)=a2-3a B.(a+3)2=a2+6a+9C.6a2+1=a2(6+) D.a2-9=(a+3)(a-3)7、下列分解因式正确的是( )A. B.C. D.8、下列因式分解中,正确的是( )A.x2-4x+4=xx-4+4 B.4a2-12a+9=(2a+3)2C.ab2-c2=ab2-c2 D.(x+3)2-4=x+5x+19、已知a2(b+c)=b2(a+c)=2021,且a、b、c互不相等,则c2(a+b)﹣2020=( )A.0 B.1 C.2020 D.202110、多项式3ax2 - 3ay2分解因式的结果是( )A.3a(x2 - y2) B.3a(x - y) 2C.3a(y + x)(y - x) D.3a(x + y)(x - y)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在实数范围内分解因式:a2﹣3b2=_____.2、分解因式:________.3、若多项式5x2+17x﹣12可因式分解成(x+a)(bx+c),其中a、b、c均为整数,则a,b,c的中位数是_____4、因式分解:=___________.5、把多项式ax2-2axy+ay2分解因式的结果是____.三、解答题(5小题,每小题10分,共计50分)1、(1)计算:2·+; (2)因式分解:3+12+12x.2、分解因式:(1)2a3﹣8ab2;(2)(a2+1)2﹣4a2.3、分解因式:.4、(1)分解因式 (2)计算5、(1)计算:(2)计算:(3)分解因式:;(4)分解因式:.-参考答案-一、单选题1、A【分析】利用完全平方公式和平方差公式对各个选项进行判断即可.【详解】解:A、,故本选项正确;B、x2+2xy-y2 一、三项不符合完全平方公式,不能用公式法进行因式分解,故本选项错误;C、x2+xy-y2中间乘积项不是两底数积的2倍,不能用公式法进行因式分解,故本选项错误;D、-x2-y2不符合平方差公式,不能用公式法进行因式分解,故本选项错误.故选:A.【点睛】本题考查了公式法分解因式,能用完全平方公式进行因式分解的式子的特点是:两项平方项的符号相同,另一项是两底数积的2倍,熟记公式结构是求解的关键.2、D【分析】根据提公因式法,先提取各个多项式中的公因式,再对余下的多项式进行观察,能分解的继续分解.【详解】A -a2+ab-ac=-a(a-b+c) ,故本选项错误;B 9xyz-6x2y2=3xy(3z-2xy),故本选项错误;C 3a2x-6bx+3x=3x(a2-2b+1),故本选项错误; D ,故本选项正确.故选:D.【点睛】本题考查提公因式法分解因式,准确确定公因式是求解的关键.3、C【分析】根据因式分解的定义和方法逐一判断即可.【详解】∵=﹣2x+1≠﹣2x﹣1,∴A不是因式分解,不符合题意;∵(a+b)(a﹣b)=不符合因式分解的定义,∴B不是因式分解,不符合题意;∵﹣4x+4=,符合因式分解的定义,∴C是因式分解,符合题意;∵﹣1≠,不符合因式分解的定义,∴D不是因式分解,不符合题意;故选C.【点睛】本题考查了因式分解的定义即把一个多项式分成几个因式的积的形式,熟练掌握因式分解的实质是恒等变形是解题的关键.4、B【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,故此选项符合题意;.,故此选项不合题意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.5、D【分析】根据因式分解的定义严格判断即可.【详解】∵+1≠a(a+1)∴A分解不正确;∵,不是因式分解,∴B不符合题意;∵(a﹣2)(a+3)+1含有加法运算,∴C不符合题意;∵,∴D分解正确;故选D.【点睛】本题考查了因式分解,即把一个多项式写成几个因式的积,熟练进行因式分解是解题的关键.6、D【分析】根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可.【详解】解:A、a(a-3)=a2-3a,属于整式乘法,不符合题意;B、(a+3)2=a2+6a+9,属于整式乘法,不符合题意;C、6a2+1=a2(6+)不是因式分解,不符合题意;D、a2-9=(a+3)(a3)属于因式分解,符合题意;故选:D【点睛】本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式.7、C【分析】根据因式分解的方法逐个判断即可.【详解】解:A. ,原选项错误,不符合题意;B. ,原选项错误,不符合题意;C. ,正确,符合题意;D. ,原选项错误,不符合题意;故选:C.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.8、D【分析】A、原式利用完全平方公式分解得到结果,即可作出判断;B、原式利用完全平方公式分解得到结果,即可作出判断;C、原式不能分解,不符合题意;D、原式利用平方差公式分解得到结果,即可作出判断.【详解】解:A、原式=(x-2)2,不符合题意;B、原式=(2a-3)2,不符合题意;C、原式不能分解,不符合题意;D、原式=(x+3+2)(x+3-2)=(x+5)(x+1),符合题意.故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.9、B【分析】根据题意先通过已知等式,找到a,b,c的关系再求值即可得出答案.【详解】解:∵a2(b+c)=b2(a+c).∴a2b+a2c﹣ab2﹣b2c=0.∴ab(a﹣b)+c(a+b)(a﹣b)=0.∴(a﹣b)(ab+ac+bc)=0.∵a≠b.∵a2(b+c)=2021.∴a(ab+ac)=2021.∴a(﹣bc)=2021.∴﹣abc=2021.∴abc=﹣2021.∴原式=c(ac+bc)﹣2020=c(﹣ab)﹣2020=﹣abc﹣2020=2021﹣2020=1.故选:B.【点睛】本题考查用因式分解求代数式的值,利用题中等式得到ab+bc+ac=0是解答本题的关键.10、D【分析】首先提公因式3a,再利用平方差进行分解即可.【详解】解:3ax2 - 3ay2 ,故选:D.【点睛】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.解题关键是掌握提公因式法与公式法分解因式.二、填空题1、(a+)(a﹣)a﹣)(a+)【分析】根据平方差公式因式分解,运用2次,注意分解要彻底【详解】a2﹣3b2=a2﹣()2=(a+)(a﹣).【点睛】本题考查了根据平方差公式因式分解,实数,解题的关键是注意在实数范围内分解要彻底.2、【分析】先提取公因式-a,再用完全平方公式分解因式得出答案.【详解】解:,故答案为:【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解因式,分解因式要彻底是解题关键.3、4【分析】首先利用十字交乘法将5x2+17x-12因式分解,继而求得a,b,c的值.【详解】利用十字交乘法将5x2+17x-12因式分解,可得:5x2+17x-12=(x+4)(5x-3)=(x+a)(bx+c).∴,∵的中位数是4∴a,b,c的中位数是4故答案为:4.【点睛】本题考查十字相乘法分解因式以及中位数,掌握十字相乘法是正确分解因式的前提,确定a、b、c的值是得出正确答案的关键.4、【分析】先提公因式,再利用完全平方公式分解即可.【详解】解:==故答案为:【点睛】本题考查了提公因式法和公式法分解因式,解题的关键是掌握完全平方公式.5、【分析】先提公因式,然后根据完全平方公式因式分解即可.【详解】解:原式==,故答案为:【点睛】本题考查了提公因式法和公式法因式分解,熟练掌握完全平方公式的结构特点是解本题的关键.三、解答题1、(1)0;(2)3x【分析】(1)根据题意,得·=,,合并同类项即可;(2)先提取公因式3x,后套用完全平方公式即可.【详解】(1)2·+原式=2+-3=0.(2)原式=3x(+4x+4)=3x.【点睛】本题考查了幂的运算,整式的加减,因式分解,熟练掌握公式,灵活按照先提取公因式,后用公式的思路分解因式是解题的关键.2、(1);(2).【分析】(1)综合利用提公因式法和平方差公式分解因式即可得;(2)综合利用平方差公式()和完全平方公式()分解因式即可得.【详解】解:(1)原式,;(2)原式,.【点睛】本题考查了因式分解,熟练掌握乘法公式是解题关键.3、.【分析】先将因式进行分组为,再综合利用提公因式法和平方差公式分解因式即可得.【详解】解:原式.【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题关键.4、(1)(2)-12【分析】(1)先提取a,再根据完全平方公式即可求解;(2)根据二次根式的运算法则即可求解.【详解】解:(1)==(2)====-12.【点睛】此题主要考查因式分解与二次根式的运算,解题的关键是熟知其运算法则.5、(1);(2);(3);(4).【分析】(1)根据多项式乘以单项式,利用多项式的每一项分别与单项式相乘,再把积相加进行计算即可;(2)首先计算小括号,再合并化简中括号里面,最后计算除法即可.(3)原式提取公因式即可;。












