好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2018年北京市高考数学试卷(文科).doc

20页
  • 卖家[上传人]:人***
  • 文档编号:482274435
  • 上传时间:2023-04-30
  • 文档格式:DOC
  • 文档大小:266.50KB
  • / 20 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2018年北京市高考数学试卷(文科) 一、选择题共8小题,每小题5分,共40分在每小题列出的四个选项中,选出符合题目要求的一项1.(5.00分)已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=(  )A.{0,1} B.{﹣1,0,1} C.{﹣2,0,1,2} D.{﹣1,0,1,2}2.(5.00分)在复平面内,复数的共轭复数对应的点位于(  )A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(5.00分)执行如图所示的程序框图,输出的s值为(  )A. B. C. D.4.(5.00分)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的(  )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.(5.00分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为(  )A.f B.f C.f D.f6.(5.00分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(  )A.1 B.2 C.3 D.47.(5.00分)在平面直角坐标系中,,,,是圆x2+y2=1上的四段弧(如图),点P其中一段上,角α以Ox为始边,OP为终边.若tanα<cosα<sinα,则P所在的圆弧是(  )A. B. C. D.8.(5.00分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则(  )A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉A D.当且仅当a≤时,(2,1)∉A 二、填空题共6小题,每小题5分,共30分。

      9.(5.00分)设向量=(1,0),=(﹣1,m).若⊥(m﹣),则m=   .10.(5.00分)已知直线l过点(1,0)且垂直于x轴.若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为   .11.(5.00分)能说明“若a>b,则<”为假命题的一组a,b的值依次为   .12.(5.00分)若双曲线﹣=1(a>0)的离心率为,则a=   .13.(5.00分)若x,y满足x+1≤y≤2x,则2y﹣x的最小值是   .14.(5.00分)若△ABC的面积为(a2+c2﹣b2),且∠C为钝角,则∠B=   ;的取值范围是   . 三、解答题共6小题,共80分解答应写出文字说明,演算步骤或证明过程15.(13.00分)设{an}是等差数列,且a1=ln2,a2+a3=5ln2.(Ⅰ)求{an}的通项公式;(Ⅱ)求e+e+…+e.16.(13.00分)已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.17.(13.00分)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)18.(14.00分)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.19.(13.00分)设函数f(x)=[ax2﹣(3a+1)x+3a+2]ex.(Ⅰ)若曲线y=f(x)在点(2,f(2))处的切线斜率为0,求a;(Ⅱ)若f(x)在x=1处取得极小值,求a的取值范围.20.(14.00分)已知椭圆M:+=1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有两个不同的交点A,B.(Ⅰ)求椭圆M的方程;(Ⅱ)若k=1,求|AB|的最大值;(Ⅲ)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点Q(﹣,)共线,求k. 2018年北京市高考数学试卷(文科)参考答案与试题解析 一、选择题共8小题,每小题5分,共40分。

      在每小题列出的四个选项中,选出符合题目要求的一项1.(5.00分)已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=(  )A.{0,1} B.{﹣1,0,1} C.{﹣2,0,1,2} D.{﹣1,0,1,2}【分析】根据集合的交集的定义进行求解即可.【解答】解:∵集合A={x||x|<2}={x|﹣2<x<2},B={﹣2,0,1,2},∴A∩B={0,1},故选:A.【点评】本题主要考查集合的基本运算,比较基础. 2.(5.00分)在复平面内,复数的共轭复数对应的点位于(  )A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】利用复数的除法运算法则,化简求解即可.【解答】解:复数==,共轭复数对应点的坐标(,﹣)在第四象限.故选:D.【点评】本题考查复数的代数形式的乘除运算,复数的几何意义,是基本知识的考查. 3.(5.00分)执行如图所示的程序框图,输出的s值为(  )A. B. C. D.【分析】直接利用程序框图的应用求出结果.【解答】解:执行循环前:k=1,S=1.在执行第一次循环时,S=1﹣=.由于k=2≤3,所以执行下一次循环.S=,k=3,直接输出S=,故选:B.【点评】本题考查的知识要点:程序框图和循环结构的应用. 4.(5.00分)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的(  )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【分析】根据充分条件和必要条件的定义结合等比数列的性质进行判断即可.【解答】解:若a,b,c,d成等比数列,则ad=bc,反之数列﹣1,﹣1,1,1.满足﹣1×1=﹣1×1,但数列﹣1,﹣1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.故选:B.【点评】本题主要考查充分条件和必要条件的判断,结合等比数列的性质是解决本题的关键. 5.(5.00分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为(  )A.f B.f C.f D.f【分析】利用等比数列的通项公式,转化求解即可.【解答】解:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为:=.故选:D.【点评】本题考查等比数列的通项公式的求法,考查计算能力. 6.(5.00分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(  )A.1 B.2 C.3 D.4【分析】画出三视图的直观图,判断各个面的三角形的情况,即可推出结果.【解答】解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC=,CD=,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.【点评】本题考查简单几何体的三视图的应用,是基本知识的考查. 7.(5.00分)在平面直角坐标系中,,,,是圆x2+y2=1上的四段弧(如图),点P其中一段上,角α以Ox为始边,OP为终边.若tanα<cosα<sinα,则P所在的圆弧是(  )A. B. C. D.【分析】根据三角函数线的定义,分别进行判断排除即可.【解答】解:A.在AB段,正弦线小于余弦线,即cosα<sinα不成立,故A不满足条件.B.在CD段正切线最大,则cosα<sinα<tanα,故B不满足条件.C.在EF段,正切线,余弦线为负值,正弦线为正,满足tanα<cosα<sinα,D.在GH段,正切线为正值,正弦线和余弦线为负值,满足cosα<sinα<tanα不满足tanα<cosα<sinα.故选:C.【点评】本题主要考查三角函数象限和符号的应用,分别判断三角函数线的大小是解决本题的关键. 8.(5.00分)设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则(  )A.对任意实数a,(2,1)∈A B.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉A D.当且仅当a≤时,(2,1)∉A【分析】利用a的取值,反例判断(2,1)∈A是否成立即可.【解答】解:当a=﹣1时,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,﹣x+y>4,x+y≤2},显然(2,1)不满足,﹣x+y>4,x+y≤2,所以A,C不正确;当a=4,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,4x+y>4,x﹣4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确;故选:D.【点评】本题考查线性规划的解答应用,利用特殊点以及特殊值转化求解,避免可行域的画法,简洁明了. 二、填空题共6小题,每小题5分,共30分。

      9.(5.00分)设向量=(1,0),=(﹣1,m).若⊥(m﹣),则m= ﹣1 .【分析】利用向量的坐标运算,以及向量的垂直,列出方程求解即可.【解答】解:向量=(1,0),=(﹣1,m).m﹣=(m+1,﹣m).∵⊥(m﹣),∴m+1=0,解得m=﹣1.故答案为:﹣1.【点评】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力. 10.(5.00分)已知直线l过点(1,0)且垂直于x轴.若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为 (1,0) .【分析】先求出直线x=1,代入抛物线中,求出y,根据l被抛物线y2=4ax截得的线段长为4,即可求出a,问题得以解决.【解答】解:∵直线l过点(1,0)且垂直于x轴,∴x=1,代入到y2=4ax,可得y2=4a,显然a>0,∴y=±2,∵l被抛物线y2=4ax截得的线段长为4,∴4=4,解得a=1,∴y2=4x,∴抛物线的焦点坐标为(1,0),故答案为:(1,0)【点评】本题考查了直线和抛物线的位置关系,属于基础题. 11.(5.00分)能说。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.