
大连市真金教育信息咨询有限公司高三数学三角函数D精炼试题.doc
11页"辽宁省大连市真金教育信息咨询有限公司高三数学 第03章 三角函数D精炼试题 新人教A版 "【考点导读】1.掌握三角函数的值域与最值的求法,能运用三角函数最值解决实际问题;2.求三角函数值域与最值的常用方法:(1)化为一个角的同名三角函数形式,利用函数的有界性或单调性求解;(2)化为一个角的同名三角函数形式的一元二次式,利用配方法或图像法求解;(3)借助直线的斜率的关系用数形结合求解;(4)换元法.【基础练习】1.函数在区间上的最小值为 1 .2.函数的最大值等于 .3.函数且的值域是___________________.4.当时,函数的最小值为 4 .【范例解析】例1.(1)已知,求的最大值与最小值.(2)求函数的最大值.分析:可化为二次函数求最值问题.解:(1)由已知得:,,则.,当时,有最小值;当时,有最小值.(2)设,则,则,当时,有最大值为.点评:第(1)小题利用消元法,第(2)小题利用换元法最终都转化为二次函数求最值问题;但要注意变量的取值范围.例2.求函数的最小值.分析:利用函数的有界性求解.解法一:原式可化为,得,即,故,解得或(舍),所以的最小值为.解法二:表示的是点与连线的斜率,其中点B在左半圆上,由图像知,当AB与半圆相切时,最小,此时,所以的最小值为.点评:解法一利用三角函数的有界性求解;解法二从结构出发利用斜率公式,结合图像求解.例3.已知函数,.(I)求的最大值和最小值; (II)若不等式在上恒成立,求实数的取值范围.分析:观察角,单角二次型,降次整理为形式. 解:(Ⅰ). 又,,即,.(Ⅱ),,且,,即的取值范围是.点评:第(Ⅱ)问属于恒成立问题,可以先去绝对值,利用参数分离转化为求最值问题.本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象和性质解题的能力.【反馈演练】1.函数的最小值等于____-1_______.2.当时,函数的最小值是______4 _______.3.函数的最大值为_______,最小值为________.4.函数的值域为 . 5.已知函数在区间上的最小值是,则的最小值等于_________.6.已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)求函数在区间上的最小值和最大值.解:(Ⅰ).因此,函数的最小正周期为.(Ⅱ)因为在区间上为增函数,在区间上为减函数,又,,,故函数在区间上的最大值为,最小值为.第8课 解三角形【基础练习】1.在△ABC中,已知BC=12,A=60°,B=45°,则AC= .2.在中,若,则的大小是______________.3.在中,若,,,则 .【范例解析】例1. 在△ABC中,a,b,c分别为∠A,∠B,∠C的对边,已知,,.(1)求的值;(2)求的值.分析:利用转化为边的关系.解:(1)由.(2)由得.由余弦定理得: ,解得:或,若,则,得,即矛盾,故.点评:在解三角形时,应注意多解的情况,往往要分类讨论.例2.在三角形ABC中,已知,试判断该三角形的形状.解法一:(边化角)由已知得:,化简得,由正弦定理得:,即,又,,.又,或,即该三角形为等腰三角形或直角三角形.解法二:(角化边)同解法一得:,由正余弦定理得:,整理得:,即或,即该三角形为等腰三角形或直角三角形.点评:判断三角形形状主要利用正弦或余弦定理进行边角互化,从而利用角或边判定三角形形状.BDCαβA例4例3.如图,D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=,∠ABC=.(1)证明:;(2)若AC=DC,求.分析:识别图中角之间的关系,从而建立等量关系.(1)证明:,,,(2)解:AC=DC,.,,.点评:本题重点是从图中寻找到角之间的等量关系,从而建立三角函数关系,进而求出的值.【反馈演练】1.在中,则BC =_____________.2.的内角∠A,∠B,∠C的对边分别为a,b,c,若a,b,c成等比数列,且,则_____.3.在中,若,,则的形状是____等边___三角形. 4.若的内角满足,则= .5.在中,已知,,.(Ⅰ)求的值;(Ⅱ)求的值.解:(Ⅰ)在中,,由正弦定理,.所以.(Ⅱ)因为,所以角为钝角,从而角为锐角,于是,,..6.在中,已知内角,边.设内角,周长为.(1)求函数的解析式和定义域;(2)求的最大值.解:(1)的内角和,由得. 应用正弦定理,知, . 因为, 所以, (2)因为 , 所以,当,即时,取得最大值.7.在中,,.(Ⅰ)求角的大小;(Ⅱ)若最大边的边长为,求最小边的边长.解:(Ⅰ),.又,.(Ⅱ),边最大,即.又,角最小,边为最小边.由且,得.由得:.所以,最小边.第9课 解三角形的应用【考点导读】1.运用正余弦定理等知识与方法解决一些与测量和几何计算有关的实际问题.2.综合运用三角函数各种知识和方法解决有关问题,深化对三角公式和基础知识的理解,进一步提高三角变换的能力.【基础练习】1.在200高的山顶上,测得山下一塔顶与塔底的俯角分别为30°,60°,则塔高为_________. 2或 2.某人朝正东方向走x km后,向右转150°,然后朝新方向走3km,结果他离出发点恰好km,那么x的值为_______________ km.3.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东,行驶4h后,船到达C处,看到这个灯塔在北偏东,这时船与灯塔的距离为 km.ABCD第4题4.如图,我炮兵阵地位于A处,两观察所分别设于B,D,已知为边长等于的正三角形,当目标出现于C时,测得,,求炮击目标的距离解:在中,由正弦定理得:∴在中,由余弦定理得:∴答:线段的长为. 【范例解析】北乙甲例1(1)例 .如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?分析:读懂题意,正确构造三角形,结合正弦定理或余弦定理求解.解法一:如图(2),连结,由已知,北甲乙例1(2),,又,是等边三角形,,由已知,,,在中,由余弦定理,.北乙甲例1(3).因此,乙船的速度的大小为(海里/小时).答:乙船每小时航行海里.解法二:如图(3),连结,由已知,,,,.由正弦定理,,即,.在中,由已知,由余弦定理,.,乙船的速度的大小为(海里/小时).答:乙船每小时航行海里.点评:解法二也是构造三角形的一种方法,但计算量大,通过比较二种方法,学生要善于利用条件简化解题过程.【反馈演练】1.江岸边有一炮台高30m,江中有两条船,由炮台顶部测得俯角分别为和,而且两条船与炮台底部连线成角,则两条船相距____________m. 2.有一长为1km的斜坡,它的倾斜角为,现要将倾斜角改为,则坡底要伸长____1___km.3.某船上的人开始看见灯塔在南偏东方向,后来船沿南偏东方向航行45海里后,看见灯塔在正西方向,则此时船与灯塔的距离是__________海里.4.把一根长为30cm的木条锯成两段,分别作钝角三角形的两边和,且,则第三条边的最小值是____________cm.经长期观察,函数的图象可以近似地看成函数的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是 ( A ) A. B. C. D.。