
2025届安徽省灵璧县数学九上开学联考试题【含答案】.doc
25页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………2025届安徽省灵璧县数学九上开学联考试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)一次函数的图像如图所示,则的取值范围是( )A. B. C. D.2、(4分)如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点设PC的长度为x,PE与PB的长度和为y,图②是y关于x的函数图象,则图象上最低点H的坐标为( )A.(1,2) B.() C. D.3、(4分)下列各式正确的个数是( )①;②;③;④A.0 B.1 C.2 D.34、(4分)若分式方程=2+的解为正数,则a的取值范围是( )A.a>4 B.a<4 C.a<4且a≠2 D.a<2且a≠05、(4分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为( )A.3 B.4 C.5 D.66、(4分)下列各式从左到右的变形中,是因式分解的为( )A. B.C. D.7、(4分)如图,中,,,平分交于,若,则的面积为( )A. B. C. D.8、(4分)为了了解某市参加中考的25000名学生的视力情况,抽查了2000名学生的视力进行统计分析,下面四个判断正确的是( )A.2000名学生的视力是总体的一个样本 B.25000名学生是总体C.每名学生是总体的一个个体 D.样本容量是2000名二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知直线经过点,则直线的图象不经过第__________象限.10、(4分)在□ABCD中,∠A+∠C=80°,则∠B的度数等于_____________.11、(4分)如图所示,将四根木条组成的矩形木框变成▱ABCD的形状,并使其面积变为原来的一半,则这个平行四边形的一个最小的内角的度数是_____.12、(4分)已知直角三角形的周长为14,斜边上的中线长为3. 则直角三角形的面积为________.13、(4分)求值:=____.三、解答题(本大题共5个小题,共48分)14、(12分)按要求解不等式(组)(1)求不等式的非负整数解. (2)解不等式组,并把它的解集在数轴上表示出来.15、(8分)(1) ; (2).16、(8分)如图,在矩形中,是上一点,垂直平分,分别交、、于点、、,连接、.(1)求证:;(2)求证:四边形是菱形;(3)若,为的中点,,求的长.17、(10分)在学校组织的八年级知识竞赛中,每班参加比赛的人数相同,成绩分为、、、四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)求一班参赛选手的平均成绩;(2)此次竞赛中,二班成绩在级以上(包括级)的人数有几人?(3)求二班参赛选手成绩的中位数.18、(10分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔 试面 试体 能甲858075乙809073丙837990(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分(不计其他因素条件),请你说明谁将被录用.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)关于x的一元二次方程(2m-6)x2+x-m2+9=0的常数项为0,则实数m=_______20、(4分)函数中自变量x的取值范围是_______.21、(4分)如图,在中,,,,点为的中点,在边上取点,使.绕点旋转,得到(点、分别与点、对应),当时,则___________.22、(4分)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,未超过20本的不打折,试写出付款金额(单位:元)与购买数量(单位:本)之间的函数关系_______.23、(4分)一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为__________.二、解答题(本大题共3个小题,共30分)24、(8分)一个容器盛满纯药液,第一次倒出一部分纯药液后,用水加满;第二次又倒出同样多的药液,若此时容器内剩下的纯药液是,则每次倒出的液体是多少?25、(10分)如图,一次函数的图象与轴交于点,与正比例函数的图象相交于点,且.(1)分别求出这两个函数的解析式;(2)求的面积;(3)点在轴上,且是等腰三角形,请直接写出点的坐标.26、(12分)如图,在正方形中,,分别是,上两个点,. (1)如图1,与的关系是________;(2)如图2,当点是的中点时,(1)中的结论是否仍然成立,若成立,请进行证明;若不成立,说明理由;(3)如图2,当点是的中点时,求证:.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】根据一次函数的图象得到关于k的不等式,求出k的取值范围即可.【详解】∵一次函数的图象过二、四象限,∴k−2<0,解得k<2.故选:D.此题考查一次函数图象与系数的关系,解题关键在于判定k的大小.2、C【解析】如图,连接PD.由B、D关于AC对称,推出PB=PD,推出PB+PE=PD+PE,推出当D、P、E共线时,PE+PB的值最小,观察图象可知,当点P与A重合时,PE+PB=3,推出AE=EB=1,AD=AB=2,分别求出PB+PE的最小值,PC的长即可解决问题.【详解】如图,连接PD.∵B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE,∴当D、P、E共线时,PE+PB的值最小,如下图:当点P与A重合时,PE+PB=3,,AD=AB=2在RT△AED中,DE=点H的纵坐标为 点H的横坐标为 H故选C.本题考查正方形的性质,解题关键在于熟练掌握正方形性质及计算法则.3、B【解析】根据根式运算法则逐个进行计算即可.【详解】解:①,故错误;②这个形式不存在,二次根式的被开分数为非负数,故错误;③;,正确;④,故错误.故选B.本题考查了二次根式的化简,注意二次根式要化最简.4、C【解析】试题分析:去分母得:x=1x﹣4+a,解得:x=4﹣a,根据题意得:4﹣a>0,且4﹣a≠1,解得:a<4且a≠1.故选C.考点:分式方程的解.5、A【解析】作DE⊥AB于E,∵AB=10,S△ABD =15,∴DE=3,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=CD=3,故选A.6、D【解析】根据把整式变成几个整式的积的过程叫因式分解进行分析即可.【详解】A、是整式的乘法运算,不是因式分解,故A不正确;B、是积的乘方,不是因式分解,故B不正确;C、右边不是整式乘积的形式,故C不正确;D、是按照平方差公式分解的,符合题意,故D正确;故选:D.本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别.7、A【解析】由平分可得,故BD=CD=2,利用30°的Rt可得AD=BD=1可得AC=AD+CD=3,根据勾股定理可得:AB= 计算即可得的面积.【详解】∵中,,∴∵平分∴∴∴BD=CD=2∵,,∴AD=BD=1∴AC=AD+CD=1+2=3根据勾股定理可得:AB= ∴ 故选:A本题考查了勾股定理及30°的直角三角形所对的直角边是斜边的一半及三角形的面积公式,掌握勾股定理及30°的直角三角形的性质是解题的关键.8、A【解析】根据相关概念(总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目)进行分析.【详解】根据题意可得:2000名学生的视力情况是总体,2000名学生的视力是样本,2000是样本容量,每个学生的视力是总体的一个个体.故选A.考查了总体、个体、样本、样本容量.解题关键是理解相差概念(总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目).二、填空题(本大题共5个小题,每小题4分,共20分)9、四【解析】根据题意求出b,再求出直线即可.【详解】∵直线经过点,∴b=3∴∴不经过第四象限.本题考查的是一次函数,熟练掌握一次函数的图像是解题的关键.10、140°【解析】根据平行四边形的性质可得∠A的度数,再利用平行线的性质解答即可.【详解】解:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∵∠A+∠C=80°,∴∠A=40°,∵AD∥BC,∴∠A+∠B=180°,∴∠B=140°.故答案为:140°.本题主要考查了平行四边形的性质和平行线的性质,属于应知应会题型,熟练掌握平行四边形的性质是解题关键.11、30°【解析】过A作AE⊥BC于点E,由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,可得AE=AB,由此即可求得∠ABE=30°,即平行四边形中最小的内角为30°.【详解】解:过A作AE⊥BC于点E,如图所示:由四根木条组成的矩形木框变成▱ABCD的形状,面积变为原来的一半,得到AE=AB,又△ABE为直角三角形,∴∠ABE=30°,则平行四边形中最小的内角为30°.故答案为:30°本题考查了平行四边形的面积公式及性质,根据题意求得AE=AB是解决问题的关键.12、2【解析】由∠ACB=90°,CD是斜边上的中线,求出AB=1,根据AB+AC+BC=14,求出AC+BC,根据勾股定理得出AC2+BC2=AB2=31推出AC•BC=14,根据SAC•BC即可求出答案.【详解】如图,∵∠ACB=90°,CD是斜边上的中线,∴AB=2CD=1.∵AB+AC+BC=14,∴AC+BC=8,由勾股定理得:AC2+BC2=AB2=31,∴(AC+BC)2﹣2AC•BC=31,∴AC•BC=14,∴SAC•BC=2.故答案为:2.本题考查了对直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,能根据性质求出AC•BC的值是解答此题的关键.13、.【解析】根据二次根式的性质,求出算术平方根即可.【详解】解:原式=.故答案为:.此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.三、解答题(本大题共5个小题,共48分)14、(1)非负整数解为1、。
