好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

向量数乘运算及其几何意义教学设计.doc

9页
  • 卖家[上传人]:壹****1
  • 文档编号:387720277
  • 上传时间:2023-01-23
  • 文档格式:DOC
  • 文档大小:457.50KB
  • / 9 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 向量数乘运算及其几何意义教学设计一、教材分析1.《新课程原则》的解读分析向量具有丰富的现实背景和物理背景,是沟通几何、代数、三角等内容的桥梁,是重要的数学模型在本模块的教学中,应鼓励学生使用计算器和计算机摸索和解决问题在相应的内容中可以插入数学探究或数学建模活动2. 在整个高中教材中的地位和作用向量,具有“数”与“行”的双重身份,是解决问题的一种工具,作用非常大,贯穿于整个高中数学的学习中3. 本章节地位、本节的逻辑关系向量数乘运算及其几何意义位于人教版《必修4》2.2.3节,在本章节中起着承前起后的作用学生在掌握向量加法、减法的基本上,学习实数与向量的积的运算已无多大困难通过前面学习两个向量的运算,进一步转化为数与向量的联系,是背面学习平面向量基本定理的基本二、教学目的设计(一)教学重难点重点:掌握实数与向量的积的定义、运算律,理解向量共线定理难点:向量共线定理的探究及其应用二)三维目的设计1.知识与技能: 通过实例,掌握向量数乘运算,理解其几何意义,理解向量共线定理纯熟运用定义、运算律进行有关计算,可以运用定理解决向量共线、三点共线、直线平行等问题2.过程与措施:理解掌握向量共线定理及其证明过程,会根据向量共线定理判断两个向量与否共线。

      3.态度情感与价值观:通过由实例到概念,由具体到抽象,培养学生自主探究知识形成的过程的能力,合伙释疑过程中合伙交流的能力激发学生学习数学的爱好和积极性,陶冶学生的情感,培养学生实事求是的科学态度,敢于创新的精神三)教情学情分析本节课是为高一8班的数学教学而设计的,由于我任教的是高三,因此对本班级的某些状况缺少理解通过与任课教师以及所在班学生的交流得知,前面学生已经学完向量的加减运算,学生具有一定的独立思考,合伙释疑的能力因此,本节课采用“探究释疑”的授课方式,既能充足发挥学生主观能动性,又能达到预期的教学目的 (四)教学预设前制定的预习提纲一、基本知识点1.一般地,我们规定 ,这种运算叫做向量的数乘,记作 ,它的长度和方向规定如下:(1) (2) 2.向量数乘的运算律:(1) (结合律) (2) (第一分派率) (3) (第二分派率) 3.向量共线定理 二、三基自测1.计算 5(3-2)+4(2-3)= 2.设两个非零向量与不共线,若 = +,=2+8,3(-) 求证:A、B、D三点共线。

      (五)教学方略通过探究、启发、当堂训练的教学程序,采用启发式解说、互动式讨论、反馈式评价的授课方式,培养学生的自学能力和分析解决问题的能力,借助多媒体辅助教学,达到增长课堂效率的目的,营造生动活泼的课堂教学氛围三、教学内容设计课题:向量数乘运算及其几何意义课型:复习课 教法:探究释疑和多媒体辅助教学的措施教具:多媒体及课件辅助教学【教学程序】复习向量的加减法探究数乘向量的定义探究数乘向量的运算律探究向量共线定理例题与练习【教学过程】(一)引入1.复习向量的加法、减法,(温故而知新),采用提问的形式问题1:向量加法的运算法则?问题2:向量减法的几何意义?学生回答完毕后,教师通过多媒体上的图像让学生更直观感受 向量的加法:三角形法则(首尾相连)和平行四边形法则(共起点)向量的减法:, 则 共起点,连终点,方向指向被减数)2.问题情境 :一质点从点O出发做匀速直线运动,若通过1s的位移相应的向量用表达,那么在同方向上通过3s的位移所相应的向量可用 来表达这是何种运算的成果?启发学生发现:这些公式都是实数与向量间的关系3.【探究1】已知非零向量,作出和,你能说处她们的几何意义吗?问题1:相加后,和的长度和方向有什么变化?问题2:这些变化与哪些因素有关?将学生提成两组,第一组:;第二组:。

      让学生在白纸上作出图像,并讨论两个问题最后学生之间互相交流,总结结论生:与方向相似且;生:与方向相反且师:非常好!教师通过多媒体,看长度和方向的图像变化形式二)新课解说1.实数与向量的积的定义请人们根据上述问题并作一下类比,看看如何定义实数λ与向量的积?启发学生从如下角度思考:是向量?长度?方向?根据学生总结,让学生看大屏幕一般地,我们规定实数λ与向量的积是一种向量,这种运算叫做向量的数乘,记作: ,它的长度和方向规定如下:(1)(2)当λ>0时,的方向与的方向相似;当λ<0时,的方向与的方向相反由(1)可知,当或时,2.实数与向量的积的运算律【探究2】问题一:求作向量和(为非零向量),并进行比较问题二:已知向量、,求作向量和,并进行比较将全班划分为2个小组,组内同窗展开讨论,提出措施并自主探究教师在学生中进行巡视,理解学生的进展状况,并适时加以引导在整个过程中,同窗们都能积极思考问题,参与的热情很高师:鼓励学生踊跃回答生:结论: , 生:类比实数乘法的运算律向量数乘的运算律:设、为任意向量,、为任意实数,则有:结合律: 第一分派律:第二分派律: 为了减少难度,教科书不规定对三个运算律作出证明,只规定学生会用。

      小注:实数与向量可以求积,但不能进行加减运算例1:计算(口答) (1) (2) (3) 设计意图:规定学生纯熟运用向量数乘运算的运算律教学中,不能让学生将本题简朴地看作字母的代数运算,可以让她们在代数运算的同步说出其几何意义,使学生明确向量数乘运算的特点解:(1)原式= (2)原式= (3)原式= 剖析:向量的加、减、数乘运算统称为向量的线形运算对于任意向量、及任意实数、,恒有3、向量共线定理思考:引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗?生:数乘向量与原向量是共线的 探究3】问题1:如果 (), 那么,向量与与否共线?问题2: 与非零向量共线, 那么, ?(学生提成两组,各选一问进行研究,然后同窗之间互相交流,最后提高结论教师巡视,适时加以引导,理解学生进展状况)生:对于向量()、,如果有一种实数,使得 , 那么,由数乘向量的定义知:向量与共线生:若向量与共线,,且向量的长度是的长度的倍,即有,当与同方向时,有;当与反方向时,有,因此始终有一种实数,使师:如果没有的限制,会有什么成果?(学生惊讶,没有限制会怎么样呢?立即进入思考状态生:问题1成立。

      与任意向量都是共线向量生:问题2不成立向量共线定理 : 向量与非零向量共线当且仅当有唯一一种实数,使得 评析:1.让学生对的理解定理涉及的两层意思也就是将来我们在选修中学到的充要条件2.让学生自己先体验;若无此限制,会有什么成果?再感悟到只有用非零向量 ,才干表达与它共线的所有向量3.通过度组讨论后,集同窗们的劳动成果、智慧于一体,彼此之间再进行交流,充足体现了“众人拾柴火焰高”例2.已知任意两非零向量、,试作, ,你能判断A、B、C三点之间的位置关系吗?为什么?设计意图:运用向量共线判断三点共线的措施,这是判断三点共线常用的措施教学中可以先让学生作图,通过观测图形得到A、B、C三点共线的猜想,再将平面几何中判断三点共线的措施转化为用向量共线证明三点共线,本题重要引导学生理清思路,具体过程可由学生完毕解:作图如右(过程略) 依图观测,知A、B、C三点共线CAoBCAoACAoOCAo证明如下:∵又∴ ,又与有公共点A,∴ A、B、C三点共线评析:证明三点共线,可以直接运用定理,找出两向量间关系,再运用它们有一种公共点,得到三点共线教学中运用多媒体作图,进行动态演示,揭示向量、变化过程中,A、B、C三点始终在同一条直线上的规律。

      变式练习】如图,已知、,试判断与与否共线?CEABD解:∵ 、 又 ∴ 与共线评析:证明向量共线,可以直接运用定理思考:在本题中,若B、C分别是AD、AE的三等分点,你能否运用向量关系来证明BC‖DE呢?生:,即∥,又由于BC、DE不重叠,因此BC∥DE三)课堂小结通过本节学习,规定人们掌握实数与向量的积的定义,掌握实数与向量的积的运算律,理解向量共线定理,并能在解题中加以运用1.概念与定理① 的定义及运算律② 向量共线定理:向量与非零向量共线当且仅当有唯一一种实数,使得 2.知识应用:① 证明 向量共线;② 证明 三点共线: 两向量共线且有一种公共点若,即与共线且有一种公共点B,则A、B、C三点共线;③ 证明 两直线平行:直线AB∥直线CD ∥AB、CD 不重叠作业: 9、12(四)当堂检测 (知己知彼,才干百战不殆)1.计算 8(2-+)-6(-2+-)-2(2+)= 2.设是非零向量,λ是非零实数,下列结论中对的的是 (A)与-的方向相反 (B)(C)与 的方向相似 (D) 3.设、是不共线的两个非零向量,若 =2 -,=3+,-3求证:A、B、C三点共线。

      (五)课后拓展提高(不畏浮云遮望眼,只缘身在最高层)(选做)在平行四边形ABCD中,点M是AB的中点,点N段BD上,且BN= BD.求证M、N、C三点共线四、教后剖析(一)学业评价自主性:注重发展学生的个性,分层式练习和选择性作业,充足体现了学生的主体地位实践性:通过学生评析中的变式训练,给学生提供了一种较好的数学学习环境和学习机会二)教学设计后预设性反思向量数乘运算及其几何意义是继向量的加法、减法之后的基本运算,为了对的的结识向量数乘运算及其几何意义,一方面复习了向量的加法、减法,然后通过学生比较熟悉的例子,引入主题本节课总共设立三个探究题,目的是通过学生自主探究、合伙释疑,参与知识形成的过程我的教学的一种理念是:体现学生的主体地位,培养学生科学的探究能力设计本节课之后,我想让学生在知识上:掌握向量数乘的定义、运算律及其几何意义,理解两个向量共线的含义并能解决:向量共线、三点共线、直线平行等问题在能力上:培养学生自主探究知识形成的过程的能力,合伙释疑过程中合伙交流的能力通过对例题的分析,使学生掌握解题的思想和措施;对变式训练的操作,使学生巩固知识点的掌握;。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.