好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

2021-2022学年河南省驻马店市市第三高级中学高一数学文下学期期末试题含解析.docx

6页
  • 卖家[上传人]:专***
  • 文档编号:332196463
  • 上传时间:2022-08-25
  • 文档格式:DOCX
  • 文档大小:193.08KB
  • / 6 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 2021-2022学年河南省驻马店市市第三高级中学高一数学文下学期期末试题含解析一、 选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有是一个符合题目要求的1. 右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是A.     B.     C.    D. 参考答案:D2. 若,,,,则,,,的大小关系是(    ).A. B. C. D.参考答案:A由于函数在上是减函数,故有.再由,,可得.故选.3. 如图所示,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为(  )A. B. C. D.1参考答案:A【考点】由三视图求面积、体积.  【专题】计算题;图表型.【分析】此题为一三棱锥,且同一点出发的三条棱长度为1,可以以其中两条棱组成的直角三角形为底,另一棱为高,利用体积公式求得其体积.【解答】解:根据三视图,可知该几何体是三棱锥,右图为该三棱锥的直观图,并且侧棱PA⊥AB,PA⊥AC,AB⊥AC.则该三棱锥的高是PA,底面三角形是直角三角形,所以这个几何体的体积,故选A.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的体积,由于本题中几何体出现了同一点出发的三条棱两两垂直,故体积易求.三视图的投影规则是:“主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等”,.三视图是新课标的新增内容,在以后的高考中有加强的可能.4. 与直线关于x轴对称的直线方程为(    )A. B. C. D. 参考答案:A【分析】设对称直线上的点为,求它关于轴的对称点并代入已知直线的方程,所得方程即为所求的直线方程.【详解】设对称直线上的点为,则其关于轴的对称点在直线上,所以即,选A.【点睛】若直线,那么关于轴的对称直线的方程为,关于轴的对称直线的方程为,关于直线对称的直线的方程 .5. (5分)已知圆的方程式x2+y2=36,记过点P(1,2)的最长弦和最短弦分别为AB、CD,则直线AB、CD的斜率之和等于() A. ﹣1 B. C. 1 D. ﹣参考答案:B考点: 直线与圆相交的性质. 专题: 直线与圆.分析: 根据过圆心的弦最长,以P为中点的弦最短,进行求解即可.解答: 圆心坐标为O(O,O),当过点P(1,2)的最长弦AB过圆心O时,AB最长此时AB的斜率k=,过点P(1,2)的弦以P为中点时,此时弦CD最短,此时满足CD⊥AB.则AB的斜率k=,则直线AB、CD的斜率之和等于+2=,故选:B.点评: 本题主要考查直线和圆的位置关系的应用,要求理解最长弦和最短弦的位置.6. 点P(1,2,z)到点A(1,1,2)、B(2,1,1)的距离相等,则z在等于(   )参考答案:C略7. 若f(sin x)=3-cos 2x,则f(cos x)=(  )A.3-cos 2x B.3-sin 2xC.3+cos 2x D.3+sin 2x参考答案:B略8. 从甲、乙、丙三人中任选两名代表,甲被选中的概率为 (A)        (B)            (C)           (D)参考答案:C9. 函数的定义域为(     ) A.         B。

              C.         D. 参考答案:D10. 某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了                 解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7   人,则样本容量为(         )  A.7           B. 15           C. 25           D.35参考答案:B二、 填空题:本大题共7小题,每小题4分,共28分11. 设奇函数f(x)的定义域为.若当时, f(x)的图象如右图,则不等式f(x)<0的解集是             参考答案:或(或)12. 若的最大值是3,则的值是               .参考答案:113. 经过点且在两坐标轴上的截距相等的直线方程是     .参考答案:,或14. 函数f(x)=,则f[f(﹣2)]=     ;若f(x0)<3,则x0的取值范围是       .参考答案:2,(﹣2,7).【考点】函数的值.【分析】由已知得f(﹣2)=2﹣(﹣2)﹣1=3,从而f[f(﹣2)]=f(3),由此能求出f[f(﹣2)]的值;由f(x0)<3,得到:当x0>0时,f(x0)=log2(x0+1)<3;当x0≤0时,f(x0)=﹣1<3.由此能求出x0的取值范围.【解答】解:∵函数f(x)=,∴f(﹣2)=2﹣(﹣2)﹣1=3,f[f(﹣2)]=f(3)=log24=2.∵f(x0)<3,∴当x0>0时,f(x0)=log2(x0+1)<3,解得0<x0<7;当x0≤0时,f(x0)=﹣1<3,解得﹣2<x0≤0.综上,x0的取值范围是(﹣2,7).故答案为:2,(﹣2,7).15. 已知函数,,则函数的单调递增区间为             .参考答案:[0,]∵,∴,∴当,即时,函数单调递增,故当时,函数的单调递增区间为.答案: 16. 设A=B={a,b,c,d,e,…,x,y,z}(元素为26个英文字母),作映射f:A→B为并称A中字母拼成的文字为明文,相应的B中对应字母拼成的文字为密文,若现在有密文为mvdlz,则与其对应的明文应为      .参考答案:lucky【考点】映射.【分析】理解题意中明文与密文的转换关系,再将密文中每一个字母翻译成明文即可.【解答】解:由明文与密文的关系可知:密文“mvdlz”对应的明文是“lucky”.故答案为:lucky.17. 高为的四棱锥S﹣ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为 . .参考答案:【考点】点、线、面间的距离计算.【分析】由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD的中心与顶点S之间的距离.【解答】解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S,A,B,C,D均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD的中心与顶点S之间的距离为: =故答案为:.三、 解答题:本大题共5小题,共72分。

      解答应写出文字说明,证明过程或演算步骤18. 如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)设PD=AD=1,求棱锥D-PBC的高.参考答案:(1)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=AD.从而BD2+AD2=AB2,故BD⊥AD.又PD⊥底面ABCD,可得BD⊥PD.所以BD⊥平面PAD.又PA?平面PAD,故PA⊥BD.(2)如图,作DE⊥PB,垂足为E,已知PD⊥底面ABCD,则PD⊥BC.由(1)知BD⊥AD,又BC∥AD,所以BC⊥BD.故BC⊥平面PBD,BC⊥DE.则DE⊥平面PBC.由题设知PD=1,则BD=,PB=2.根据DE·PB=PD·BD,得DE=.即棱锥D-PBC的高为.19. 如图,在梯形ABCD中,,,,(Ⅰ)若,求实数的值; (Ⅱ)若,求数量积的值参考答案:(Ⅰ)(Ⅱ)【分析】(Ⅰ)根据平面向量基本定理求解,(Ⅱ)根据向量数量积定义求解.【详解】(Ⅰ)因为,所以,,因此,(Ⅱ)【点睛】本题考查平面向量基本定理以及向量数量积,考查基本分析判断与求解能力,属中档题.20. 已知函数.(1)若函数f(x)在[4,+∞)上是增函数,求实数a的取值范围;(2)若函数f(x)在[1,e]上的最小值为3,求实数a的值.参考答案:【考点】6E:利用导数求闭区间上函数的最值;6B:利用导数研究函数的单调性.【分析】(1)求出函数的导数,根据函数的单调性求出a的范围即可;(2)根据函数的单调性求出f(x)的最小值,求出a的值即可.【解答】解:(1),由已知,即x﹣2a≥0,∴2a≤x,∴2a≤4,∴a≤2.(2)当2a≤1,即时,x∈[1,e],f'(x)≥0,∴f(x)在[1,e]上单调递增,∴f(x)min=f(1)=2a=3,∴舍;当1<2a<e,即时,x∈(1,2a),f'(x)<0,∴f(x)在x∈(1,2a)上单调递减;x∈(2a,e),f'(x)>0,∴f(x)在x∈(1,2a)上单调递增,∴f(x)min=f(2a)=ln2a+1=3,∴舍;当2a≥e,即时,x∈[1,e],f'(x)≤0,∴f(x)在[1,e]上单调递减,∴,∴a=e;综上,a=e.21. ( 12分)已知. (1)( 4分)化简;         (2)( 8分)若,求的值.参考答案:(1)=…2分         …………………………………………4分(2)      即   ①……………6分可见与同号,为第一或第三象限角.又   ②            ……………………8分联立①②可得:当为第一象限角时,==   ……………10分当为第三象限角时,==  …………12分略22. 已知数列{an}中,,().(1)求证:数列是等差数列,并求数列{an}的通项公式;(2)设,,求Sn.参考答案:(1)解:∵,(),∴,即.∴是首项为,公差为的等差数列.从而.(2)∵,由(1)知.∴()∴,即.。

      点击阅读更多内容
      猜您喜欢
      2021-2022学年安徽省合肥市第五十七中学高三物理模拟试题含解析.docx 2021-2022学年内蒙古自治区呼和浩特市土左旗第二中学高二英语测试题含解析.docx 江西省吉安市澧田中学2022年高三地理联考试题含解析.docx 江西省吉安市洲湖中学2022年高三物理月考试卷含解析.docx 2021-2022学年浙江省湖州市长超中学高一化学联考试题含解析.docx 2021-2022学年湖南省常德市石门县白云乡中学高一化学下学期期末试卷含解析.docx 江西省吉安市吉水第二中学2022年高一地理月考试题含解析.docx 2021-2022学年北京宣武区外国语实验学校高三英语上学期期末试卷含解析.docx 2021-2022学年山东省临沂市罗庄第一中学高二化学期末试题含解析.docx 2021-2022学年四川省资阳市龙门中学高二数学理上学期期末试卷含解析.docx 2021-2022学年北京延庆县第三中学高二物理期末试卷含解析.docx 2021-2022学年四川省达州市大竹中学高三化学上学期期末试题含解析.docx 2021-2022学年湖南省岳阳市平江县咏生乡中学高二生物期末试卷含解析.docx 2021-2022学年湖北省荆门市钟祥李集中学高一英语上学期期末试题含解析.docx 江西省吉安市正人中学2022-2023学年高一物理上学期期末试卷含解析.docx 2021-2022学年广西壮族自治区玉林市博白县龙潭中学高二物理上学期期末试题含解析.docx 2021-2022学年山东省青岛市第十三中学高二化学测试题含解析.docx 2021-2022学年江西省景德镇市602所中学高一数学文月考试卷含解析.docx 江西省宜春市京英中学2021-2022学年高三地理联考试题含解析.docx 2021-2022学年安徽省阜阳市曹寨中学高三化学期末试卷含解析.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.