
2024年中考数学真题 一次函数及其应用(原卷版).docx
15页中考数学真题精选 一次函数及其应用一、单选题1.(2024·四川德阳·中考真题)正比例函数的图象如图所示,则的值可能是( )A. B. C. D.2.(2024·广东·中考真题)已知不等式的解集是,则一次函数的图象大致是( )A. B. C. D.3.(2024·陕西·中考真题)一个正比例函数的图象经过点和点,若点A与点B关于原点对称,则这个正比例函数的表达式为 ( )A. B. C. D.4.(2024·青海·中考真题)如图,一次函数的图象与x轴相交于点A,则点A关于y轴的对称点是( )A. B. C. D.5.(2024·内蒙古呼伦贝尔·中考真题)点在直线上,坐标是二元一次方程的解,则点的位置在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限6.(2024·吉林长春·中考真题)如图,在平面直角坐标系中,点是坐标原点,点在函数的图象上.将直线沿轴向上平移,平移后的直线与轴交于点,与函数的图象交于点.若,则点的坐标是( )A. B. C. D.7.(2024·河北·中考真题)扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为时,扇面面积为、该折扇张开的角度为时,扇面面积为,若,则与关系的图象大致是( )A. B. C. D.二、填空题8.(2024·湖北·中考真题)铁的密度约为,铁的质量与体积成正比例.一个体积为的铁块,它的质量为 .9.(2024·吉林长春·中考真题)已知直线(、是常数)经过点,且随的增大而减小,则的值可以是 .(写出一个即可)10.(2024·上海·中考真题)若正比例函数的图像经过点,则y的值随x的增大而 .(选填“增大”或“减小”)11.(2024·甘肃·中考真题)已知一次函数,当自变量时,函数y的值可以是 (写出一个合理的值即可).12.(2024·江苏扬州·中考真题)如图,已知一次函数的图象分别与x、y轴交于A、B两点,若,,则关于x的方程的解为 .13.(2024·内蒙古包头·中考真题)在平面直角坐标系中,若一次函数的图象经过第一、二、三象限,请写出一个符合该条件的一次函数的表达式 .14.(2024·上海·中考真题)某种商品的销售量y(万元)与广告投入x(万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为 万元.15.(2024·四川凉山·中考真题)如图,一次函数的图象经过两点,交轴于点,则的面积为 .16.(2024·四川自贡·中考真题)一次函数的值随的增大而增大,请写出一个满足条件的的值 .17.(2024·江苏苏州·中考真题)直线与x轴交于点A,将直线绕点A逆时针旋转,得到直线,则直线对应的函数表达式是 .三、解答题18.(2024·广东广州·中考真题)一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高和脚长之间近似存在一个函数关系,部分数据如下表:脚长……身高……(1)在图1中描出表中数据对应的点;(2)根据表中数据,从和中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为,请根据(2)中求出的函数解析式,估计这个人的身高.19.(2024·陕西·中考真题)我国新能源汽车快速健康发展,续航里程不断提升,王师傅驾驶一辆纯电动汽车从A市前往B市,他驾车从A市一高速公路入口驶入时,该车的剩余电量是,行驶了后,从B市一高速公路出口驶出,已知该车在高速公路上行驶的过程中,剩余电量与行驶路程之间的关系如图所示.(1)求y与x之间的关系式;(2)已知这辆车的“满电量”为,求王师傅驾车从B市这一高速公路出口驶出时,该车的剩余电量占“满电量”的百分之多少.20.(2024·吉林长春·中考真题)区间测速是指在某一路段前后设置两个监控点,根据车辆通过两个监控点的时间来计算车辆在该路段上的平均行驶速度.小春驾驶一辆小型汽车在高速公路上行驶,其间经过一段长度为20千米的区间测速路段,从该路段起点开始,他先匀速行驶小时,再立即减速以另一速度匀速行驶(减速时间忽略不计),当他到达该路段终点时,测速装置测得该辆汽车在整个路段行驶的平均速度为100千米/时.汽车在区间测速路段行驶的路程(千米)与在此路段行驶的时间(时)之间的函数图象如图所示.(1)的值为________;(2)当时,求与之间的函数关系式;(3)通过计算说明在此区间测速路段内,该辆汽车减速前是否超速.(此路段要求小型汽车行驶速度不得超过120千米/时)21.(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.制定加工方案生产背景背景1◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:服装种类加工人数(人)每人每天加工量(件)平均每件获利(元)风y224雅x1正148探究任务任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3拟定加工方案制定使每天总利润最大的加工方案.22.(2024·云南·中考真题)、两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售、两种型号的吉祥物,有关信息见下表:成本(单位:元/个)销售价格(单位:元/个)型号35a型号42若顾客在该超市购买8个种型号吉祥物和7个种型号吉祥物,则一共需要670元;购买4个种型号吉祥物和5个种型号吉祥物,则一共需要410元.(1)求、的值;(2)若某公司计划从该超市购买、两种型号的吉祥物共90个,且购买种型号吉祥物的数量(单位:个)不少于种型号吉祥物数量的,又不超过种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为元,求的最大值.注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.23.(2024·四川德阳·中考真题)罗江糯米咸鹅蛋是德阳市非物质文化遗产之一,至今有200多年历史,采用罗江当地林下养殖的鹅产的散养鹅蛋,经过传统秘方加以糯米、青豆等食材以16道工序手工制作而成.为了迎接端午节,进一步提升糯米咸鹅蛋的销量,德阳某超市将购进的糯米咸鹅蛋和肉粽进行组合销售,有A、B两种组合方式,其中A组合有4枚糯米咸鹅蛋和6个肉粽,B组合有6枚糯米咸鹅蛋和10个肉粽.A、B两种组合的进价和售价如下表:价格AB进价(元/件)94146售价(元/件)120188(1)求每枚糯米咸鹅蛋和每个肉粽的进价分别为多少?(2)根据市场需求,超市准备的B种组合数量是A种组合数量的3倍少5件,且两种组合的总件数不超过95件,假设准备的两种组合全部售出,为使利润最大,该超市应准备多少件A种组合?最大利润为多少?24.(2024·四川眉山·中考真题)眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用元购进的款文创产品和用元购进的款文创产品数量相同.每件款文创产品进价比款文创产品进价多元.(1)求,两款文创产品每件的进价各是多少元?(2)已知,文创产品每件售价为元,款文创产品每件售价为元,根据市场需求,商店计划再用不超过元的总费用购进这两款文创产品共件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?25.(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.销售单价x/元…1214161820…销售量y/盒…5652484440…(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.26.(2024·天津·中考真题)已知张华的家、画社、文化广场依次在同一条直线上,画社离家,文化广场离家.张华从家出发,先匀速骑行了到画社,在画社停留了,之后匀速骑行了到文化广场,在文化广场停留后,再匀速步行了返回家.下面图中表示时间,表示离家的距离.图象反映了这个过程中张华离家的距离与时间之间的对应关系.请根据相关信息,回答下列问题:(1)①填表:张华离开家的时间141330张华离家的距离②填空:张华从文化广场返回家的速度为______;③当时,请直接写出张华离家的距离关于时间的函数解析式;(2)当张华离开家时,他的爸爸也从家出发匀速步行了直接到达了文化广场,那么从画社到文化广场的途中两人相遇时离家的距离是多少?(直接写出结果即可)27.(2024·四川眉山·中考真题)如图,在平面直角坐标系中,一次函数与反比例函数的图象交于点,,与轴,轴分别交于,两点.(1)求一次函数和反比例函数的表达式;(2)若点在轴上,当的周长最小时,请直接写出点的坐标;(3)将直线向下平移个单位长度后与轴,轴分别交于,两点,当时,求的值.28.(2024·甘肃临夏·中考真题)如图,直线与双曲线交于,两点,已知点坐标为.(1)求,的值;(2)将直线向上平移个单位长度,与双曲线在第二象限的图象交于点,与轴交于点,与轴交于点,若,求的值.29.(2024·黑龙江绥化·中考真题)为了响应国家提倡的“节能环保”号召,某共享电动车公司准备投入资金购买、两种电动车.若购买种电动车辆、种电动车辆,需投入资金万元;若购买种电动车辆、种电动车辆,需投入资金万元.已知这两种电动车的单价不变.(1)求、两种电动车的单价分别是多少元?(2)为适应共享电动车出行市场需求,该公司计划购买、两种电动车辆,其中种电动车的数量不多于种电动车数量的一半.当购买种电动车多少辆时,所需的总费用最少,最少费用是多少元?(3)该公司将购买的、两种电动车投放到出行市场后,发现消费者支付费用元与骑行时间之间的对应关系如图.其中种电动车支付费用对应的函数为;种电动车支付费用是之内,起步价元,对应的函数为.请根据函数图象信息解决下列问题. ①小刘每天早上需要骑行种电动车或种电动车去公司上班.已知两种电动车的平均行驶速度均为3(每次骑行均按平均速度行驶,其它因素忽略不计),小刘家到公司的。
