
辽宁省锦州市名校2025届九上数学开学达标测试试题【含答案】.doc
21页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………辽宁省锦州市名校2025届九上数学开学达标测试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知,,且,若,,则的长为( )A.4 B.9 C. D.2、(4分)关于一次函数,下列结论正确的是 A.图象经过 B.图象经过第一、二、三象限C.y随x的增大而增大 D.图象与y轴交于点3、(4分)下列各式中计算正确的是( )A.=(﹣2)×(﹣4)=8B.=4a(a>0)C.=3+4=7D.4、(4分)九(2)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16这组数据的中位数、众数分别为( )A.16,16 B.10,16 C.8,8 D.8,165、(4分)一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是( )A.平均数 B.众数 C.中位数 D.方差6、(4分)如图,直线交坐标轴于、两点,则不等式的解集为( )A. B. C. D.7、(4分)如图,矩形纸片中,,把纸片沿直线折叠,点落在处,交于点,若,则的面积为( )A. B. C. D.8、(4分)已知反比例函数y=的图像上有两点A(a-3,2b)、B(a,b-2),且a<0,则b的取值范围是(▲)A.b<2 B.b<0 C.-2
已知从A.B两地到C.D两地的运价如表:(1)填空:若从A果园运到C地的苹果为10吨,则从A果园运到D地的苹果为___吨,从B果园运到C地的苹果为___吨,从B果园运到D地的苹果为___吨,总运输费为___元;(2)如果总运输费为750元时,那么从A果园运到C地的苹果为多少吨?15、(8分)如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣1),B(﹣3,﹣3),C(﹣1,﹣3).将△ABC先向右平移3个单位,再向上平移4个单位得到△A1B1C1,在坐标系中画出△A1B1C1,并写出△A1B1C1各顶点的坐标.16、(8分)如图,在菱形中,,垂足为点,且为边的中点.(1)求的度数;(2)如果,求对角线的长.17、(10分)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.18、(10分)如图,在平面直角坐标系内,已知△ABC的三个顶点坐标分别为A(1,3)、B(4,2)、C(3,4).(1)将△ABC沿水平方向向左平移4个单位得△A1B1C1,请画出△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2;(3)若△A1B1C1与△A2B2C2关于点P成中心对称,则点P的坐标是 B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在平面直角坐标系中,点,射线轴,直线交线段于点,交轴于点,是射线上一点.若存在点,使得恰为等腰直角三角形,则的值为_______.20、(4分)已知,则x等于_____.21、(4分)四边形ABCD为菱形,该菱形的周长为16,面积为8,则∠ABC为_____度.22、(4分)若正比例函数y=kx的图象经过点(1,2),则k=_______.23、(4分)一次函数y=﹣x﹣3与x轴交点的坐标是_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,点,在上,,,,试判断与有怎样的数量和位置关系,并说明理由.25、(10分)如图,将等腰△ABC绕顶点B逆时针方向旋转40°得到△A1BC1,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.求证:ΔBCF≌ΔBA1D.当∠C=40°时,请你证明四边形A1BCE是菱形.26、(12分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销量y(件)之间的关系如下表:若日销量y是销售价x的一次函数.(1)求出日销量y(件)与销售价x(元)的函数关系式;(2)求销售定价为30元时,每日的销售利润.x(元)152025……y(件)252015……参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】根据勾股定理求出两点间的距离,进而得,然后代入CD=即可求出CD.【详解】解:∵,,且,∴AB=,则,又∵,,CD====9,故选:B.本题考查的是用勾股定理求两点间的距离,求出是解题的关键.2、D【解析】根据一次函数的性质,依次分析各个选项,选出正确的选项即可.【详解】A.把x=3代入y=﹣2x+3得:y=﹣6+3=﹣3,即A选项错误;B.一次函数y=﹣2x+3的图象经过第一、二、四象限,即B选项错误;C.一次函数y=﹣2x+3的图象上的点y随x的增大而减小,即C选项错误;D.把x=0代入y=﹣2x+3得:y=3,图象与y轴交于点(0,3),即D选项正确.故选D.本题考查了一次函数图象上点的坐标特征和一次函数的性质,正确掌握一次函数的性质是解题的关键.3、D【解析】根据二次根式的意义、性质逐一判断即可得.【详解】A.、没有意义,此选项错误;B.a(a>0),此选项错误;C.5,此选项错误;D.,此选项正确.故选D.本题考查了二次根式的性质与化简,解题的关键是熟练掌握二次根式的定义和性质.4、D【解析】根据众数和中位数的定义求解.找出次数最多的数为众数;把5个数按大小排列,位于中间位置的为中位数.【详解】解:在这一组数据中16是出现次数最多的,故众数是16;而将这组数据从小到大的顺序排列后,处于中间位置的数是1,那么由中位数的定义可知,这组数据的中位数是1.故选:D.本题考查统计知识中的中位数和众数的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.一组数据中出现次数最多的数据叫做众数.5、D【解析】依据平均数、中位数、众数、方差的定义和公式分别计算新旧两组数据的平均数、中位数、众数、方差求解即可.【详解】原数据的3,4,4,5的平均数为,原数据的3,4,4,5的中位数为4,原数据的3,4,4,5的众数为4,原数据的3,4,4,5的方差为×[(3-4)2+(4-4)2×2+(5-4)2]=0.5;新数据3,4,4,4,5的平均数为,新数据3,4,4,4,5的中位数为4,新数据3,4,4,4,5的众数为4,新数据3,4,4,4,5的方差为×[(3-4)2+(4-4)2×3+(5-4)2]=0.4;∴添加一个数据4,方差发生变化,故选D.本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.6、B【解析】求-kx-b<0的解集,即为kx+b>0,就是求函数值大于0时,x的取值范围.【详解】∵要求−kx−b<0的解集,即为求kx+b>0的解集,∴从图象上可以看出等y>0时,x>−3.故选:B此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.7、A【解析】由矩形的性质可得∠B=90°,AB∥CD,可得∠DCA=∠CAB,由折叠的性质可得BC=EC=4cm,AB=AE,∠E=∠B=90°,∠EAC=∠CAB=∠DCA,可得AO=OC=5cm,由勾股定理可求OE的长,即可求△ABC的面积.【详解】解:∵四边形ABCD是矩形∴∠B=90°,AB∥CD∴∠DCA=∠CAB∵把纸片ABCD沿直线AC折叠,点B落在E处,∴BC=EC=4cm,AB=AE,∠E=∠B=90°,∠EAC=∠CAB,∴∠DCA=∠EAC∴AO=OC=5cm∴,∴AE=AO+OE=8cm,∴AB=8cm,∴△ABC的面积=×AB×BC=16cm2,故选:A.本题考查了翻折变换,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.8、C【解析】先根据k>0判断出在每个象限内,y随x的增大而减小,且图象在第一、三象限,再根据a-3<a<0判断出点A、B都在第三象限,然后根据反比例函数的性质得2b>b-2即可.【详解】∵反比例函数y=中k=6>0,∴在每个象限内,y随x的增大而减小,且图象在第一、三象限.∵a<0,∴a-3<a<0,∴0>2b>b-2,∴-2<b<0.故选:C.本题考查了反比例函数的增减性,利用反比例函数的增减性比较大小时,一定要注意“在每一个象限内”比较大小.二、填空题(本大题共5个小题,每小题4分,共20分)9、k<3【解析】试题解析:∵一次函数中y随x的增大而减小,∴ 解得, 故答案是:k【详解】请在此输入详解!10、.【解析】根据一次函数与一元一次不等式的关系进行解答即可.【详解】解:∵直线y=kx+b(k≠0)经过一、三象限且与y轴交于正半轴,∴k>0,b>0,∴y随x的增大而增大,y随x的减小而减小,∵直线y=kx+b(k≠0)经过点P(-1,2),∴当y<2,即kx+b<2时,x<-1.故答案为x<-1.本题考查了一次函数与一元一次不等式的联系.11、x≤1【解析】根据图象的性质,当y≤0即图象在x轴下侧,x≤1.【详解】根据图象和数据可知,当y≤0即图象在x轴下侧,x≤1.故答案为x≤1本题考查一次函数的图象,考查学生的分析能力和读图能力.12、1【解析】根据二次根式的性质,被开方数大于等于0可知:1-x≥0,解得x的范围即可得出x的最大值.【详解】根据题意得:1-x≥0,解得:x≤1,∴自变量x的最大值是1,故答案为1.本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(1)当函数表达式是二次根式时,被开方数。
