好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

安徽省滁州市南桥区海亮学校2024届高三实验班下学期第四次月考数学试题.doc

20页
  • 卖家[上传人]:城***
  • 文档编号:376602061
  • 上传时间:2024-01-09
  • 文档格式:DOC
  • 文档大小:2.20MB
  • / 20 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 安徽省滁州市南桥区海亮学校2024届高三实验班下学期第四次月考数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内写在试题卷、草稿纸上均无效2.答题前,认真阅读答题纸上的《注意事项》,按规定答题一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知双曲线满足以下条件:①双曲线E的右焦点与抛物线的焦点F重合;②双曲线E与过点的幂函数的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点.则双曲线的离心率是( )A. B. C. D.2.已知等差数列的前项和为,,,则( )A.25 B.32 C.35 D.403.已知函数,则的最小值为( )A. B. C. D.4.以,为直径的圆的方程是A. B.C. D.5.若集合,,则( )A. B. C. D.6.设集合,,则( ).A. B.C. D.7.若为虚数单位,则复数,则在复平面内对应的点位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如图,在等腰梯形中,,,,为的中点,将与分别沿、向上折起,使、重合为点,则三棱锥的外接球的体积是( )A. B.C. D.9.已知点为双曲线的右焦点,直线与双曲线交于A,B两点,若,则的面积为( )A. B. C. D.10.若数列为等差数列,且满足,为数列的前项和,则( )A. B. C. D.11.已知抛物线y2= 4x的焦点为F,抛物线上任意一点P,且PQ⊥y轴交y轴于点Q,则 的最小值为( )A. B. C.l D.112.已知集合,则=( )A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。

      13.已知数列{an}的前n项和为Sn,向量(4,﹣n),(Sn,n+3).若⊥,则数列{}前2020项和为_____14.某几何体的三视图如图所示,且该几何体的体积是3,则正视图的的值__________.15.已知是第二象限角,且,,则____.16.一个四面体的顶点在空间直角坐标系中的坐标分别是,,,,则该四面体的外接球的体积为__________.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)在多面体中,四边形是正方形,平面,,,为的中点.(1)求证:;(2)求平面与平面所成角的正弦值.18.(12分)在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系.已知点的直角坐标为,过的直线与曲线相交于,两点.(1)若的斜率为2,求的极坐标方程和曲线的普通方程;(2)求的值.19.(12分)如图,在四棱锥中,平面,四边形为正方形,点为线段上的点,过三点的平面与交于点.将①,②,③中的两个补充到已知条件中,解答下列问题:(1)求平面将四棱锥分成两部分的体积比;(2)求直线与平面所成角的正弦值.20.(12分)如图,己知圆和双曲线,记与轴正半轴、轴负半轴的公共点分别为、,又记与在第一、第四象限的公共点分别为、.(1)若,且恰为的左焦点,求的两条渐近线的方程;(2)若,且,求实数的值;(3)若恰为的左焦点,求证:在轴上不存在这样的点,使得.21.(12分)已知函数,其中为自然对数的底数,.(1)若曲线在点处的切线与直线平行,求的值;(2)若,问函数有无极值点?若有,请求出极值点的个数;若没有,请说明理由.22.(10分)已知函数,曲线在点处的切线方程为求a,b的值;证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。

      在每小题给出的四个选项中,只有一项是符合题目要求的1.B【解题分析】由已知可求出焦点坐标为,可求得幂函数为,设出切点通过导数求出切线方程的斜率,利用斜率相等列出方程,即可求出切点坐标,然后求解双曲线的离心率.【题目详解】依题意可得,抛物线的焦点为,F关于原点的对称点;,,所以,,设,则,解得,∴ ,可得,又,,可解得,故双曲线的离心率是.故选B.【题目点拨】本题考查双曲线的性质,已知抛物线方程求焦点坐标,求幂函数解析式,直线的斜率公式及导数的几何意义,考查了学生分析问题和解决问题的能力,难度一般.2.C【解题分析】设出等差数列的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得.【题目详解】设等差数列的首项为,公差为,则,解得,∴,即有.故选:C.【题目点拨】本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前项和公式的应用,属于容易题.3.C【解题分析】利用三角恒等变换化简三角函数为标准正弦型三角函数,即可容易求得最小值.【题目详解】由于,故其最小值为:.故选:C.【题目点拨】本题考查利用降幂扩角公式、辅助角公式化简三角函数,以及求三角函数的最值,属综合基础题.4.A【解题分析】设圆的标准方程,利用待定系数法一一求出,从而求出圆的方程.【题目详解】设圆的标准方程为,由题意得圆心为,的中点,根据中点坐标公式可得,,又,所以圆的标准方程为:,化简整理得,所以本题答案为A.【题目点拨】本题考查待定系数法求圆的方程,解题的关键是假设圆的标准方程,建立方程组,属于基础题.5.A【解题分析】用转化的思想求出中不等式的解集,再利用并集的定义求解即可.【题目详解】解:由集合,解得,则故选:.【题目点拨】本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键.属于基础题.6.D【解题分析】根据题意,求出集合A,进而求出集合和,分析选项即可得到答案.【题目详解】根据题意,则故选:D【题目点拨】此题考查集合的交并集运算,属于简单题目,7.B【解题分析】首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.【题目详解】,,则在复平面内对应的点的坐标为,位于第二象限.故选:B【题目点拨】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.8.A【解题分析】由题意等腰梯形中的三个三角形都是等边三角形,折叠成的三棱锥是正四面体,易求得其外接球半径,得球体积.【题目详解】由题意等腰梯形中,又,∴,是靠边三角形,从而可得,∴折叠后三棱锥是棱长为1的正四面体,设是的中心,则平面,,,外接球球心必在高上,设外接球半径为,即,∴,解得,球体积为.故选:A.【题目点拨】本题考查求球的体积,解题关键是由已知条件确定折叠成的三棱锥是正四面体.9.D【解题分析】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,设,得,求出的值,即得解.【题目详解】设双曲线C的左焦点为,连接,由对称性可知四边形是平行四边形,所以,.设,则,又.故,所以.故选:D【题目点拨】本题主要考查双曲线的简单几何性质,考查余弦定理解三角形和三角形面积的计算,意在考查学生对这些知识的理解掌握水平.10.B【解题分析】利用等差数列性质,若,则 求出,再利用等差数列前项和公式得【题目详解】解:因为 ,由等差数列性质,若,则得,.为数列的前项和,则.故选:.【题目点拨】本题考查等差数列性质与等差数列前项和.(1)如果为等差数列,若,则 .(2)要注意等差数列前项和公式的灵活应用,如.11.A【解题分析】设点,则点,,利用向量数量积的坐标运算可得,利用二次函数的性质可得最值.【题目详解】解:设点,则点,,,,当时,取最小值,最小值为.故选:A.【题目点拨】本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.12.D【解题分析】先求出集合A,B,再求集合B的补集,然后求【题目详解】,所以 .故选:D【题目点拨】此题考查的是集合的并集、补集运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

      13.【解题分析】由已知可得•4Sn﹣n(n+3)=0,可得Sn,n=1时,a1=S1=1.当n≥2时,an=Sn﹣Sn﹣1.可得:2().利用裂项求和方法即可得出.【题目详解】∵⊥,∴•4Sn﹣n(n+3)=0,∴Sn,n=1时,a1=S1=1.当n≥2时,an=Sn﹣Sn﹣1.,满足上式,.∴2().∴数列{}前2020项和为2(1)=2(1).故答案为:.【题目点拨】本题考查了向量垂直与数量积的关系、数列递推关系、裂项求和方法,考查了推理能力与计算能力,属于中档题.14.3【解题分析】 由已知中的三视图可得该几何体是一个以直角梯形为底面,梯形上下边长为和,高为, 如图所示,平面, 所以底面积为, 几何体的高为,所以其体积为. 点睛:在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.15.【解题分析】由是第二象限角,且,可得,由及两角和的正切公式可得的值.【题目详解】解:由是第二象限角,且,可得,,由,可得,代入,可得,故答案为:.【题目点拨】本题主要考查同角三角函数的基本关系及两角和的正切公式,相对不难,注意运算的准确性.16.【解题分析】将四面体补充为长宽高分别为的长方体,体对角线即为外接球的直径,从而得解.【题目详解】采用补体法,由空间点坐标可知,该四面体的四个顶点在一个长方体上,该长方体的长宽高分别为,长方体的外接球即为该四面体的外接球,外接球的直径即为长方体的体对角线,所以球半径为,体积为.【题目点拨】本题主要考查了四面体外接球的常用求法:补体法,通过补体得到长方体的外接球从而得解,属于基础题.三、解答题:共70分。

      解答应写出文字说明、证明过程或演算步骤17.(1)证明见解析(2)【解题分析】(1)首先证明,,,∴平面.即可得到平面,.(2)以为坐标原点,,,所在的直线分别为轴、轴、轴建立空间直角坐标系,分别求出平面和平面的法向量,带入公式求解即可.【题目详解】(1)∵平面,平面,∴.又∵四边形是正方形,∴.∵,∴平面.∵平面,∴.又∵,为的中点,∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以为坐标原点,,,所在的直线分别为轴、轴、轴建立空间直角坐标系.如图所示:则,,,.∴,,.设为平面的法向量,则,得,令,则.由题意知为平面的一个法向量,∴,∴平面与平面所成角的正弦值为.【题目点拨】本题第一问考查线线垂直,先证线面垂直时解题关键,第二问考查二面角,建立空间直角坐标系是解题关键,属于中档题.18.(1):,:;(2)【解题分析】(1)根据点斜式写出直线的直角坐标方程,并转化为极坐标方程,利用,将曲线的参数方程转化为普通方程.(。

      点击阅读更多内容
      相关文档
      四川省成都市2025年中考数学真题试卷附同步解析.docx 四川省成都市锦江区师一学校2024_2025学年下学期八年级数学期中考试卷.docx 四川省成都市2025年中考数学真题试卷含同步解析.pptx 2026版高考化学第一轮知识梳理第九章有机化学基础第54讲物质制备的综合实验探究考点1无机物的制备实验探究.docx 2026版高考化学第一轮知识梳理第九章有机化学基础第44讲烃化石燃料考点1脂肪烃的结构与性质.docx 2026版高考化学第一轮知识梳理第八章第40讲反应过程中微粒浓度变化及图像分析考点1溶液中微粒浓度的关系及分析.docx 2026版高考化学第一轮真题演练第三章金属及其化合物第11讲铁及其氧化物氢氧化物.docx 2026版高考化学第一轮真题演练第九章有机化学基础第46讲醇酚和醛酮.docx 2026版高考化学第一轮知识梳理第九章有机化学基础第55讲化学综合实验探究考点1物质含量或组成的测定.docx 2026版高考化学第一轮考点突破第一章化学物质及其变化第2讲离子反应离子方程式考点1电解质及其电离.docx 2026版高考化学第一轮知识梳理第九章有机化学基础第44讲烃化石燃料考点2芳香烃的结构与性质化石燃料的综合利用.docx 2026版高考化学第一轮知识梳理第九章有机化学基础第52讲离子的检验物质的鉴别与推断考点1常见离子的检验.docx 2026版高考化学第一轮知识梳理第八章水溶液中的离子反应与平衡第36讲弱电解质的电离平衡考点1电离平衡及影响因素.docx 2026版高考化学第一轮知识梳理第六章化学反应与能量第28讲反应热的测定及计算考点2盖斯定律及应用.docx 2026版高考化学第一轮真题演练第三章金属及其化合物第12讲铁盐和亚铁盐含铁物质的转化.docx 2026版高考化学第一轮知识梳理第九章有机化学基础第43讲考点1碳原子的成键特点有机化合物分子的空间结构.docx 2026版高考化学第一轮真题演练第九章有机化学基础第47讲羧酸及其衍生物.docx 2026版高考化学第一轮考点突破第四章非金属及其化合物第18讲硫酸含硫物质之间的转化考点1硫酸硫酸根离子的检验.docx 2026版高考化学第一轮真题演练第一章化学物质及其变化第4讲氧化还原反应的概念和规律.docx 2026版高考化学第一轮知识梳理第九章有机化学基础第47讲羧酸及其衍生物考点1羧酸酯的结构与性质.docx
      猜您喜欢
      河北省邯郸市大名一中2024届高三下学期第一次适应性考试数学试题试卷.doc 广东省汕头市贵屿中学2024届高三下学期第三次质检(期中)数学试题.doc 四川省凉山州2024届高三下综合测试(数学试题文)试题.doc 天津部分区2024届高三联考数学试题试卷.doc 重庆地区2024届高三4月数学试题考试题.doc 山东省济宁市微山县第一中学2024届高三下学期期末质量监测数学试题试卷.doc 广东省东莞市东莞中学2024届高三下学期统练四数学试题.doc 青海省西宁市大通县第一中学2024届5月份高三第二次联考数学试题卷.doc 内蒙古锡林郭勒市2024届高三下期中考数学试题.doc 山东省济南市长清第一中学2024届高三下学期初考试数学试题.doc 湖北省黄冈市重点中学2024届高三5月模拟考数学试题.doc 四川省巴中市重点中学2024届高三考前训练题数学试题Word版.doc 广东省蓝精灵中学2024届高考模拟训练题(一)数学试题试卷.doc 山南市2024届高三5月第二次月考试题(数学试题理).doc 内蒙古海拉尔市第二中学2024届高三数学试题第三次学情调研考试(数学试题)试卷.doc 广西2024届普通高中高三教学质量测试试题数学试题试卷.doc 湖北省鄂州市2024届高三下学期第一次统一考试(1月)数学试题.doc 江苏省徐州市铜山中学2024届高三考前全真模拟密卷数学试题试卷(6).doc 天津河北区2024届高考预测卷(全国Ⅱ卷)数学试题试卷.doc 广西桂林市2024届高三线上测试(一)数学试题.doc
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.