好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

上海市普陀区曹杨二中2025年高一数学第一学期期末调研模拟试题含解析.doc

13页
  • 卖家[上传人]:泽玥15****2海阔
  • 文档编号:594008949
  • 上传时间:2024-10-15
  • 文档格式:DOC
  • 文档大小:646.50KB
  • / 13 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 上海市普陀区曹杨二中2025年高一数学第一学期期末调研模拟试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则角的终边在A.第一象限 B.第二象限C.第三象限 D.第四象限2.在北京召开的国际数学家大会的会标如图所示,它是由个相同的直角三角形与中间的小正方形拼成的一个大正方形,若直角三角形中较小的锐角为,大正方形的面积是,小正方形的面积是,则A. B.C. D.3.已知函数=的图象恒过定点,则点的坐标是A.( 1,5 ) B.( 1, 4)C.( 0,4) D.( 4,0)4.为了得到函数的图象,可以将函数的图象A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位5.在正内有一点,满足等式,,则()A. B.C. D.6.下列说法正确的有()①两个面平行且相似,其余各面都是梯形的多面体是棱台;②以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;③各侧面都是正方形的四棱柱一定是正方体;④圆锥的轴截面是等腰三角形.A.1个 B.2个C.3个 D.4个7.已知幂函数的图象过点,若,则实数的值为()A. B.C. D.48.下列函数中为偶函数的是( )A. B.C. D.9.长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是( )A. B.C. D.都不对10.若,则的值为()A. B.C.或 D.二、填空题:本大题共6小题,每小题5分,共30分。

      11.已知,函数,若,则______,此时的最小值是______.12.定义域为R,值域为的一个减函数是___________.13.已知,,,,则______.14.关于的不等式的解集是________15.向量在边长为1的正方形网格中的位置如图所示,则__________16.已知正实数满足,则当__________时,的最小值是__________三、解答题:本大题共5小题,共70分解答时应写出文字说明、证明过程或演算步骤17.已知函数(1)判断的奇偶性;(2)若当时,恒成立,求实数的取值范围18.已知函数是定义在R上的奇函数,当时,.(1)求函数在上的解析式;(2)求不等式解集.19.已知函数(1)求函数最小正周期与单调增区间;(2)求函数在上的最大值与最小值20.已知函数.(1)求其最小正周期和对称轴方程;(2)当时,求函数的单调递减区间和值域.21.已知函数,,(1)求的值;(2)求函数的单调递增区间;(3)求在区间上的最大值和最小值参考答案一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】直接由实数大小比较角的终边所在象限,,所以的终边在第三象限考点:考查角的终边所在的象限【易错点晴】本题考查角的终边所在的象限,不明确弧度制致误2、C【解析】根据题意即可算出每个直角三角形面积,再根据勾股定理和面积关系即可算出三角形的两条直角边.从而算出【详解】由题意得直角三角形的面积,设三角形的边长分别为,则有,所以,所以,选C.【点睛】本题主要考查了三角形的面积公式以及直角三角形中,正弦、余弦的计算,属于基础题3、A【解析】令=,得x=1,此时y=5所以函数=的图象恒过定点(1,5).选A点睛:(1)求函数(且)的图象过的定点时,可令,求得的值,再求得,可得函数图象所过的定点为(2)求函数(且)的图象过的定点时,可令,求得的值,再求得,可得函数图象所过的定点为4、D【解析】因为,所以将函数的图象向左平移个单位,选D.考点:三角函数图像变换【易错点睛】对y=Asin(ωx+φ)进行图象变换时应注意以下两点:(1)平移变换时,x变为x±a(a>0),变换后的函数解析式为y=Asin[ω(x±a)+φ];(2)伸缩变换时,x变为(横坐标变为原来的k倍),变换后的函数解析式为y=Asin(x+φ)5、A【解析】过作交于,作交于,则,可得,在中由正弦定理可得答案.【详解】过作交于,作交于,则,,在中,,,由正弦定理得.故选:A.6、A【解析】对于①:利用棱台的定义进行判断;对于②:以直角三角形的斜边为轴旋转一周所得的旋转体不是圆锥.即可判断;对于③:举反例:底面的菱形,各侧面都是正方形的四棱柱不是正方体.即可判断;对于④:利用圆锥的性质直接判断.【详解】对于①:棱台是棱锥过侧棱上一点作底面的平行平面分割而得到的.而两个面平行且相似,其余各面都是梯形的多面体中,把梯形的腰延长后,有可能不交于一点,就不是棱台.故①错误;对于②:以直角三角形的斜边为轴旋转一周所得的旋转体不是圆锥.故②错误;对于③:各侧面都是正方形的四棱柱中,如果底面的菱形,一定不是正方体.故③错误;对于④:圆锥的轴截面是等腰三角形.是正确的.故④正确.故选:A7、D【解析】根据已知条件,推出,再根据,即可得出答案.【详解】由题意得:,解得,所以,解得:,故选:D【点睛】本题考查幂函数的解析式,属于基础题.8、B【解析】利用函数奇偶性的定义可判断A、B、C选项中各函数的奇偶性,利用特殊值法可判断D选项中函数的奇偶性.【详解】对于A选项,令,该函数的定义域为,,所以,函数为奇函数;对于B选项,令,该函数的定义域为,,所以,函数为偶函数;对于C选项,函数的定义域为,则函数为非奇非偶函数;对于D选项,令,则,,且,所以,函数为非奇非偶函数.故选:B.【点睛】本题考查函数奇偶性的判断,考查函数奇偶性定义的应用,考查推理能力,属于基础题.9、B【解析】由题意长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积【详解】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是:故选:10、A【解析】分别令和,根据集合中元素的互异性可确定结果.【详解】若,则,不符合集合元素的互异性;若,则或(舍),此时,符合题意;综上所述:.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。

      11、 ①. ②.【解析】直接将代入解析式即可求的值,进而可得的解析式,再分段求最小值即可求解.【详解】因为,所以,所以,当时,对称轴为,开口向上,此时在单调递增,,当时,,此时时,最小值,所以最小值为,故答案为:;.12、(答案不唯一)【解析】利用基本初等函数的性质可知满足要求的函数可以是,其中.【详解】因为的定义域为R,是增函数,且值域为,所以的定义域为R,是减函数,且值域为,则的定义域为R,是减函数,且值域为,所以定义域为R,值域为的一个减函数是.故答案为:(答案不唯一).13、【解析】利用两角和的正弦公式即可得结果.【详解】因为,,所以,由,,可得,,所以.故答案为:.14、【解析】不等式,可变形为:,所以.即,解得或.故答案为.15、3【解析】由题意可知故答案为316、 ①. ②.6【解析】利用基本不等式可知,当且仅当“”时取等号.而运用基本不等式后,结合二次函数的性质可知恰在时取得最小值,由此得解.【详解】解:由题意可知:,即,当且仅当“”时取等号,,当且仅当“”时取等号.故答案为:,6.【点睛】本题考查基本不等式的应用,同时也考查了配方法及二次函数的图像及性质,属于基础题.三、解答题:本大题共5小题,共70分。

      解答时应写出文字说明、证明过程或演算步骤17、(1)偶函数(2)【解析】(1)利用奇函数与偶函数的定义判断即可;(2)要使恒成立转化,判断函数的单调性,利用单调性求出的取值范围,即可得到的范围【小问1详解】函数的定义域为,关于原点对称,又,所以函数为偶函数;【小问2详解】因为在上单调递增, 故函数在上单调递减,所以,因为当时,恒成立转化为,即可,所以,则实数的取值范围为18、(1)(2)【解析】(1)根据奇函数的知识求得函数在上的解析式.(2)结合函数的单调性、奇偶性求得不等式的解集.小问1详解】当时,,.所以函数在上的解析式为.【小问2详解】当时,为增函数,所以在上为增函数.由得,所以,所以,所以不等式的解集为.19、(1),单调增区间 (2),【解析】(1)利用三角恒等变换化简函数解析式,可得函数的最小正周期与的单调区间;(2)利用整体法求函数的最值.【小问1详解】解:,函数的最小正周期,令,解得,所以单调递增区间为【小问2详解】,,,即,所以,.20、(1)最小正周期为,对称轴方程;(2)单调递减区间为,值域为.【解析】(1)利用倍角公式、辅助角公式化简函数,结合正弦函数的性质计算作答.(2)确定函数的相位范围,再借助正弦函数的性质计算作答.【小问1详解】依题意,,则,由解得:,所以,函数的最小正周期为,对称轴方程为.【小问2详解】由(1)知,因,则,而正弦函数在上单调递减,在上单调递增,由解得,由解得,因此,在上单调递减,在上单调递增,,而,即,所以函数单调递减区间是,值域为.21、(1)1;(2)(3)最大值为2,最小值为-1.【解析】(1)直接利用函数的关系式求出函数的值;(2)利用整体代换发即可求出函数的单调增区间;(3)结合(2),利用函数的定义域求出函数的单调性,进而即可求出函数的最大、小值.【小问1详解】由,得;【小问2详解】令,整理,得,故函数的单调递增区间为;【小问3详解】由,得,结合(2)可知,函数的单调递增区间为,所以函数在上单调递增,在上单调递减,故当时,函数取得最小值,且最小值为,当时,函数取得最大值,且最大值为.。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.