2025届贵州省黔东南州九年级数学第一学期开学考试模拟试题【含答案】.doc
23页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………2025届贵州省黔东南州九年级数学第一学期开学考试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图四边形是菱形,顶点在轴上,,点在第一象限,且菱形的面积为,坐标为,则顶点的坐标为( )A. B. C. D.2、(4分)如果点在第四象限,那么m的取值范围是( ).A. B. C. D.3、(4分)计算的正确结果是( )A. B.1 C. D.﹣14、(4分)如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为( )A.y=-x+2 B.y=x+2 C.y=x-2 D.y=-x-25、(4分)A、B、C分别表示三个村庄,米,米,米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在( )A.AB的中点 B.BC的中点C.AC的中点 D.的平分线与AB的交点6、(4分)若m<n,则下列结论正确的是( )A.2m>2n B.m﹣4<n﹣4 C.3+m>3+n D.﹣m<﹣n7、(4分)分式方程的解为( )A. B. C. D.8、(4分)下列各点中,与点(-3,4)在同一个反比例函数图像上的点是A.(2,-3) B.(3,4) C.(2,-6) D.(-3,-4)二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在数轴上点A表示的实数是_____________.10、(4分)甲、乙二人在相同情况下,各射靶次,两人命中环数的方差分别是,,则射击成绩较稳定的是_________.(填“甲”或“乙")11、(4分)方程的根是______.12、(4分)已知一次函数的图象经过点,则不等式的解是__________.13、(4分)若,则_____.三、解答题(本大题共5个小题,共48分)14、(12分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如图所示的尚不完整的统计图表.甲校成绩统计表分数7分8分9分10分人数1108(1)在图①中,“7分”所在扇形的圆心角等于______;(2)请你将②的统计图补充完整;(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好;(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?15、(8分)如图,在中,点D、E分别是边BC、AC的中点,过点A作交DE的延长线于F点,连接AD、CF.(1)求证:四边形ADCF是平行四边形;(2)当满足什么条件时,四边形图ADCF是菱形?为什么?16、(8分)阅读下列材料:关于x的方程:的解是,;即的解是;的解是,;的解是,; 请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.17、(10分)如图,是正方形的边上的动点,是边延长线上的一点,且,,设,.(1)当是等边三角形时,求的长;(2)求与的函数解析式,并写出它的定义域;(3)把沿着直线翻折,点落在点处,试探索:能否为等腰三角形?如果能,请求出的长;如果不能,请说明理由.18、(10分)如图,在矩形ABCD中,AC、BD相交于点O,过点A作BD的平行线AE交CB的延长线于点E.(1)求证:BE=BC;(2)过点C作CF⊥BD于点F,并延长CF交AE于点G,连接OG.若BF=3,CF=6,求四边形BOGE的周长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知:线段求作:菱形,使得且.以下是小丁同学的作法:①作线段;②分别以点,为圆心,线段的长为半径作弧,两弧交于点;③再分别以点,为圆心,线段的长为半径作弧,两弧交于点;④连接,,.则四边形即为所求作的菱形.(如图)老师说小丁同学的作图正确.则小丁同学的作图依据是:_______.20、(4分)点A(-1,y1),B(3,y2)是直线y=-4x+3图象上的两点,则y1______y2(填“>”或“<”).21、(4分)将一次函数y=3x﹣1的图象沿y轴向_____平移_____个单位后,得到的图象经过原点.22、(4分)菱形ABCD的两条对角线长分别为6和4,则菱形ABCD的面积是_____.23、(4分)将直线向下平移4个单位,所得到的直线的解析式为___.二、解答题(本大题共3个小题,共30分)24、(8分)我们给出如下定义,如果一个四边形有一条对角线能将其分成一个等边三角形和一个直角三角形,那么这个四边形叫做等垂四边形,这条对角线叫做这个四边形的等垂对角线.(1)已知是四边形的等垂对角线,,均为钝角,且比大,那么________.(2)如图,已知与关于直线对称,、两点分别在、边上,,,.求证:四边形是等垂四边形。
25、(10分)解不等式组:请结合题意填空,完成本题的解答.(1)解不等式①,得 ; (2)解不等式②,得 ; (3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .26、(12分)如图①,在矩形ABCD中,AB=,BC=3,在BC边上取两点E、F(点E在点F的左边),以EF为边所作等边△PEF,顶点P恰好在AD上,直线PE、PF分别交直线AC于点G、H.(1)求△PEF的边长;(2)若△PEF的边EF段CB上移动,试猜想:PH与BE有何数量关系?并证明你猜想的结论;(3)若△PEF的边EF在射线CB上移动(分别如图②和图③所示,CF>1,P不与A重合),(2)中的结论还成立吗?若不成立,直接写出你发现的新结论.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】过点C作x轴的垂线,垂足为E,由面积可求得CE的长,在Rt△BCE中可求得BE的长,可求得AE,结合A点坐标可求得AO,可求出OE,可求得C点坐标.【详解】如图,过点C作x轴的垂线,垂足为E,∵S菱形ABCD=20,∴AB⋅CE=20,即5CE=20,∴CE=4,在Rt△BCE中,BC=AB=5,CE=4,∴BE=3,∴AE=AB+BE=5+3=8.又∵A(−2,0),∴OA=2,∴OE=AE−OA=8−2=6,∴C(6,4),故选C.此题考查菱形的性质,坐标与图形性质,解题关键在于作辅助线2、D【解析】横坐标为正,纵坐标为负,在第四象限.【详解】解:∵点p(m,1-2m)在第四象限,∴m>0,1-2m<0,解得:m>,故选D.坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m的取值范围.3、A【解析】4、B【解析】解:设一次函数的解析式y=kx+b(k≠0),∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,1),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:,解得,该一次函数的表达式为y=x+1.故选B.5、A【解析】先计算AB2=2890000,BC2=640000,AC2=2250000,可得BC2+AC2=AB2,那么△ABC是直角三角形,而直角三角形斜边上的中线等于斜边的一半,从而可确定P点的位置.【详解】解:如图∵AB2=2890000,BC2=640000,AC2=2250000∴BC2+AC2=AB2,∴△ABC是直角三角形,∴活动中心P应在斜边AB的中点.故选:A.本题考查了勾股定理的逆定理.解题的关键是证明△ABC是直角三角形.6、B【解析】根据不等式的性质逐个判断即可.【详解】解:A、∵m<n,∴2m<2n,故本选项不符合题意;B、∵m<n,∴m﹣4<n﹣4,故本选项符合题意;C、∵m<n,∴3+m<3+n,故本选项不符合题意;D、∵m<n,∴﹣m>﹣n,故本选项不符合题意;故选:B.此题主要考查不等式的性质,解题的关键是熟知不等式的性质辨别方法.7、C【解析】观察可得最简公分母是x(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】方程的两边同乘x(x-1),得1x-1=4x,解得x=-1.检验:当x=-1时,x(x-1)≠2.∴原方程的解为:x=-1.故选C.本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.8、C【解析】先根据反比例函数中k=xy的特点求出k的值,再对各选项进行逐一检验即可.【详解】∵反比例函数y=kx过点(−3,4),∴k=(−3)×4=−12,A. ∵2×3=6≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;B. ∵3×4=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;C. ∵2×-6=−12,∴此点与点(−3,4)在同一个反比例函数图象上,故本选项正确;D. ∵(−3)×(−4)=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误。
故选C.此题考查反比例函数图象上点的坐标特征,解题关键在于求出k的值二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】如图在直角三角形中的斜边长为,因为斜边长即为半径长,且OA为半径,所以OA=,即A表示的实数是.【详解】由题意得,OA=,∵点A在原点的左边,∴点A表示的实数是-.故答案为-.本题考查了勾股定理,实数与数轴的关系,根据勾股定理求出线段OA的长是解答本题的关键.10、乙【解析】根据方差的意义解答即可.【详解】方差反映了数据的离散程度,方差越小,成绩越稳定,故射击成绩比较稳定的是乙.故答案为:乙.本题主要考查了方差的意义,清楚方差反映了数据的离散程度,方差越小,数据越稳定是解题的关键.11、【解析】对原方程移项化简,即可求出x,然后再检验即可.【详解】解:x=2,经检验x=2是分式方程的解.本题考查了解分式方程,熟练掌握解方程的方法是解题关键.12、【解析】将。





