好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

一种求解椭圆型微分方程的渐近展开方法及其在辐射热传导方程中的应用.pdf

55页
  • 卖家[上传人]:w****i
  • 文档编号:111795004
  • 上传时间:2019-11-03
  • 文档格式:PDF
  • 文档大小:1.77MB
  • / 55 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 湘潭大学 硕士学位论文 一种求解椭圆型微分方程的渐近展开方法及其在辐射热传导方 程中的应用 姓名:刘志清 申请学位级别:硕士 专业:计算数学 指导教师:舒适 20080526 ,()PDEs ,, PDEs()PDEs . ,. ,Γ ,,, ?·?0 , .,, ., ,,. ;;;. I Abstract We often encounter some elliptic PDEs with jump ( or multi-scale character- istic) coeffi cients during the research of mathematical physics. The asymptotic expansion method is eff ective to solve such problems, whose main idea is how to decompose the PDEs with jump coeffi cients into several PDEs with smooth (or single-scale characteristic) coeffi cients. In this paper, we study the asymp- totic expansion methods for elliptic PDEs and 2-D radiation heat conduction equations. Firstly, aiming at a kind of jump coeffi cient elliptic scalar equation with the general boundary condition, according to two diff erent interfaces, we propose a linear fi nite element method based on the asymptotic expansion. By using the basic theory of FEM, we obtain the same order of error function as that of the classic linear FEM under L2norm. The numerical experiments verify the correct- ness of theoretical results. Secondly, for a kind of linear radiation heat conduc- tion equations, we design and analyze a linear fi nite element method based on the asymptotic expansion. Furthermore, we give the numerical experiment results for a non-linear radiation heat conduction equation with single-temperature, which show that the asymptotic expansion method is eff ective. Key words:multi-scale characteristic;asymptotic expansion method; linear fi nite element; 2-D radiation heat conduction equations. II ,,, PDEs,, ,,,( )., .,: (IIM)([1,2,3,4,5,6]),([7,8,53,54,55,56]) ([9,10,11,12,13,14, 15,16,17,18]). ,. ,,, . ,, K-BW-K-B. PDEs,PDEs PDEs,PDEs ([19,20,21,22]), ,PDEs. , . ,([16,17,18]), , .,. ,. , .,: (1), (2) ,, , O(ε2).,Klapper,T.shaw([16]), ,,. , 1 PDES (), ,L2 O(h2). PDES, (AMG). ,(GMG)AMG, AMG A.Brandt,S.McCormick,J.Ruge([35 ∼ 47]),GMG , AMG, (), . ,ε = h,, .,, ,, . , . . (ICF)([26 ,27,28,29]), ,, ,. ,,,([23,24,25,32]), ([30,31]). , .,, ,PDEs .,, ,, ,, , . : . ,. , ,. ,. 2 ; AMG;. SobolevW m,p(Ω) . 1.m, SobolevW m,p(Ω) ?v?m,p= ( ? |α|≤m ?Dαv?Lp(Ω)) 1 p, 1 ≤ p 0.,x ? 1 . f(x)= −[t−1ex−t]∞ x − ?∞ x t−2ex−tdt = 1 x − ? ∞ x t−2ex−tdt. f(x)= 1 x + [t−2ex−t]∞ x − 2 ?∞ x t−3ex−tdt = 1 x − 1 x2 + 2 ? ∞ x t−3ex−tdt. n f(x) = n ? m=1 um(x) + Rn(x), ? um(x) = (−1)m−1(m − 1)!x−m, Rn(x) = (−1)nn! ?∞ x t−(n−1)ex−tdt. : |Rn| ≤ n! xn+1, x, ∞ ? m=1 n! xn+1 . (1)n x, n ? m=1 um(x)f(x),. (2)n ? x,,, n ? m=1 um(x)f(x) . 8 , n.xf(x), n ? m=1 umn. , .,,, . 2.εu(x,ε). u(x,ε),ε ()εu(x,ε) u(x,ε) = n ? m=0 δm(ε)um(x) + Rn(x,ε), (0 0. (2.1)u ∈ C(Ω),(Flux)β∇u ∈ C(Ω),u [u] = 0,x ∈ Γ,(2.3) [β un] = 0,x ∈ Γ,(2.4) [u] = u+− u−,[β un] = α+u+ n − ε−1α−u− n, u+,u−u+ n,u − n Ω+Ω− Γ. (2.1) ? −∇ · (β(x)∇u) = f(x),x ∈ Ω, u = 0 ,x ∈ ∂Ω, (2.5) u ∈ H1 0(Ω), a(u,v) = (f,v),∀v ∈ H1 0(Ω), (2.6) a(u,v)= ? Ωβ(x)∇u · ∇vdx, (f,v)= ? Ωfvdx. Th= {Ek,1 ≤ k ≤ M}Ω,Ek,M k, h = max 1≤k≤M hk( hkEk); {Xi,i = 1,··· ,N}ThDirichlet, N . P11,Th V h 0 = {u : u ∈ H1 0(Ω),u|Ek ∈ P1,1 ≤ k ≤ M} (2.6), uh∈ V h 0 , a(uh,vh) = (f,vh),∀vh∈ V h 0 .(2.7) 11 (2.7), AhUh= Fh, ,NAh, UhN, FhN . : (1)(2(a)), (2) (2(b)) 2 (a)(b) 1(2.5) Ω = [0,1] × [0,1],3: 3 β(x,y) = ? 1,y ≥ 1 2, ε−1, otherwise, f(x,y) = 5π2sin(πx)sin(2πy) , u(x,y) = ? sin(2πy)sin(πx),y ≥ 1 2, εsin(2πy)sin(πx), otherwise. 12 1,,Ω,xy nxny,nx = ny = n,h = 1 nx, (2.5) ,CG AMG,: 1.n,(2(a)). CG,. 1? · ?0 nε−1iter?u − uh?0 4811076.06e-4 4842441.76e-3 48164306.87e-3 48647312.74e-2 4825612161.09e-1 1,,, ,, . ,AMG, 2? · ?0 nε−1iter?u − uh?0 48146.02e-4 48451.76e-3 481656.87e-3 486452.74e-2 4825651.09e-1 2AMG. 13 ε−1?u − uh?0?u − uh?0rate 2448 12.42e-36.02e-44.01 47.06e-31.76e-34.01 162.74e-26.87e-33.98 641.09e-12.74e-23.98 2564.38e-11.09e-14.01 3,? · ?0 O(h2). 2.n,(2(b)). 4? · ?0 nε−1iter?u − uh?0 49145.78e-4 49442.25e-2 491651.98e-1 496459.69e-1 4925654.07 4,,, ,,, . 5 ε−1?u − uh?0?u − uh?0rate 2549 12.23e-35.78e-43.85 44.16e-22.25e-21.84 163.86e-11.98e-11.94 641.9019.69e-11.96 2568.014.071.96 5,? · ?0 O(h),. ,, ,(([53,54,55,56]))IIM. ,,. 14 3 ,ε−1→ ∞,(2.1) ,ε, ,, . β(x)(2.2)(2.1), ? −∇ · (α+(x)∇u+) + c0u+= f+(x),x ∈ Ω+, −∇ · (ε−1α−(x)∇u−) + c0u−= f−(x),x ∈ Ω−. (2.8) (2.1)uε, u(x; ε) = ? u+ 0(x) + εu + 1(x) + O(ε 2), x ∈ Ω+, u− 0(x) + εu − 1(x) + ε 2u− 2(x) + O(ε 3), x ∈ Ω−, u+,u−O(ε2)O(ε3), u(x; ε) ? ? u+ 0(x) + εu + 1(x), x ∈ Ω+, u− 0(x) + εu − 1(x) + ε 2u− 2(x), x ∈ Ω−. (2.9) (2.9)(2.8), ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ −∇ · (α+(x)∇u+ 0) − ε∇ · (α +(x)∇u+ 1) + c0u + 0 + c0εu+ 1 = f+(x),x ∈ Ω+, −ε−1∇ · (α−(x)∇u− 0) − ∇ · (α −(x)∇u− 1) −ε∇ · (α−(x)∇u− 2) + c0u − 0 + c0εu− 1 + c0ε2u− 2 = f−(x),x ∈ Ω−, (2.10) (2.10),ε,, ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ −∇ · (α+(x)∇u+ 0) + c0u + 0 = f+(x),x ∈ Ω+, −∇ · (α+(x)∇u+ 1) + c0u + 1 = 0,x ∈ Ω+, −∇ · (α−(x)∇u− 0) = 0, x ∈ Ω−, −∇ · (α−(x)∇u− 1) + c0u − 0 = f−(x),x ∈ Ω−, −∇ · (α−(x)∇u− 2) + c0u − 1 = 0,x ∈ Ω−. (2.11) (2.9)(2.3), u+ 0 + εu+ 1 − u− 0 − εu− 1 − ε2u− 2 = 0,x ∈ Γ, 15 ,ε, ? u+ 0 = u− 0, u+ 1 = u− 1, x ∈ Γ .(2.12) (2.9)(2.4), α+(u+ 0(x) + εu + 1(x))n− ε −1α−(u− 0(x) + εu −。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.