
湖北省武汉市洪山区东湖开发区2024-2025学年数学九年级第一学期开学经典模拟试题【含答案】.doc
26页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………湖北省武汉市洪山区东湖开发区2024-2025学年数学九年级第一学期开学经典模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)菱形的两条对角线长分别为6和8,则菱形的面积是( )A.10 B.20 C.24 D.482、(4分)中两条边的长分别为,,则第三边的长为( )A. B. C.或 D.无法确定3、(4分)如图,下列能判定AB∥CD的条件的个数是( )①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠1.A.1个 B.2个 C.3个 D.4个4、(4分)如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E,则下列结论正确的是( )A.AE=3CE B.AE=2CE C.AE=BD D.BC=2CE5、(4分)下列函数中,y随x的增大而减少的函数是( )A.y=2x+8 B.y=-2+4x C.y=-2x+8 D.y=4x6、(4分)在,,,,中,分式的个数是( )A.1 B.2 C.3 D.47、(4分)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在( )A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣48、(4分)如图,在长方形ABCD中,DC=5cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设此点为F,若△ABF的面积为30cm2,那么折叠△AED的面积为( )cm2A.16.9 B.14.4 C.13.5 D.11.8二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(a,b),那么点P变换后的对应点P′的坐标为_____.10、(4分)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是 升.11、(4分)如果一个多边形的每个外角都等于,那么这个多边形的内角和是______度.12、(4分)如图,在平行四边形ABCD中,AC和BD交于点O,过点O的直线分别与AB,DC交于点E,F,若△AOD的面积为3,则四边形BCFE的面积等于_____.13、(4分)计算: _____________.三、解答题(本大题共5个小题,共48分)14、(12分)根据要求,解答下列问题.(1)根据要求,解答下列问题.①方程x2-2x+1=0的解为________________________;②方程x2-3x+2=0的解为________________________;③方程x2-4x+3=0的解为________________________;…… ……(2)根据以上方程特征及其解的特征,请猜想:①方程x2-9x+8=0的解为________________________;②关于x的方程________________________的解为x1=1,x2=n.(3)请用配方法解方程x2-9x+8=0,以验证猜想结论的正确性.15、(8分)阅读下列材料,完成(1)、(2)小题.在平面直角坐标系中,已知轴上两点,的距离记作,如果,是平面上任意两点,我们可以通过构造直角三角形来求间的距离,如图1,过点、分别向轴、轴作垂线,和,,垂足分别是,,,,直线交于点,在中,,∴∴,我们称此公式为平面直角坐标系内任意两点,间的距离公式(1)直接应用平面内两点间距离公式计算点,的距离为_________(2)如图2,已知在平面直角坐标系中有两点,,为轴上任意一点,求的最小值16、(8分)某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试. 现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表. 项目选择统计图训练后篮球定时定点投篮测试进球统计表进球数(个)876543人数214782请你根据图表中的信息回答下列问题:(1)选择长跑训练的人数占全班人数的百分比是___________,该班共有同学___________人;(2)求训练后篮球定时定点投篮人均进球数;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%. 请求出参加训练之前的人均进球数.17、(10分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?18、(10分)已知正方形与正方形(点C、E、F、G按顺时针排列),是的中点,连接,.(1)如图1,点在上,点在的延长线上, 求证:=ME,⊥.ME简析: 由是的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE是 三角形,进而得出结论.(2)如图2, 在的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C、E、F、G按顺时针排列.若点在直线CD上,则DM= ;若点E在直线BC上,则DM= .B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若=3-x,则x的取值范围是__________.20、(4分)如图,直线经过点,则不等式的解集为________________.21、(4分)如图,正方形中,点在边上,,把线段绕点旋转,使点落在直线上的点,则两点间的距离为___________.22、(4分)将二元二次方程化为两个一次方程为______.23、(4分)如图,中,AB的垂直平分线DE分别交AB、BC于E、D,若,则的度数为__________二、解答题(本大题共3个小题,共30分)24、(8分)某体育用品商场采购员要到厂家批发购买篮球和排球共个,篮球个数不少于排球个数,付款总额不得超过元,已知两种球厂的批发价和商场的零售价如下表. 设该商场采购个篮球.品名厂家批发价/元/个商场零售价/元/个篮球排球(1)求该商场采购费用(单位:元)与(单位:个)的函数关系式,并写出自变最的取值范围:(2)该商场把这个球全都以零售价售出,求商场能获得的最大利润;(3)受原材料和工艺调整等因素影响,采购员实际采购时,低球的批发价上调了元/个,同时排球批发价下调了元/个.该体有用品商场决定不调整商场零售价,发现将个球全部卖出获得的最低利润是元,求的值.25、(10分)如图1,,是线段上的一个动点,分别以为边,在的同侧构造菱形和菱形,三点在同一条直线上连结,设射线与射线交于. (1)当在点的右侧时,求证:四边形是平形四边形.(2)连结,当四边形恰为矩形时,求的长. (3)如图2,设,,记点与之间的距离为,直接写出的所有值.26、(12分)已知关于x的一元二次方程.(1)当m为何值时,方程有两个不相等的实数根;(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】试题分析:由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案.解:∵菱形的两条对角线的长分别是6和8,∴这个菱形的面积是:×6×8=1.故选C.考点:菱形的性质.2、C【解析】分b是直角边、b是斜边两种情况,根据勾股定理计算.【详解】解:当b是直角边时,斜边c==,当b是斜边时,直角边c==,则第三边c的长为和,故选:C.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.3、B【解析】根据平行线的判定定理分别进行判断即可.【详解】解:①当∠B+∠BCD=180°,AB∥CD,故正确;②当∠3=∠2时,AB=BC,故错误;③当∠1=∠4时,AD=DC,故错误;④当∠B=∠1时,AB∥CD,故正确.所以正确的有2个故选:B.本题主要考查平行线的判定,掌握平行线的判定方法是解题的关键.4、B【解析】连接BE,根据中垂线的性质可得:BE=AE,∠ABE=∠A=30°,根据直角三角形的性质可得:∠EBC=30°,CE=BE,即AE=BE=2CE.【详解】连接BE,根据中垂线的性质可得:BE=AE;∴∠ABE=∠A=30°;又∵在中, ∠EBC=30°;∴CE=BE,即AE=BE=2CE.故选B.本题主要考查了中垂线的性质和直角三角形的性质,掌握中垂线的性质和直角三角形的性质是解题的关键.5、C【解析】试题分析:一次函数的图象有两种情况: ①当k>0时,函数的值随x的值增大而增大;②当k<0时,函数的的值随x的值增大而减小.∵函数y随x的增大而减少,∴k<0, 符合条件的只有选项C,故答案选C.考点:一次函数的图象及性质.6、B【解析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:,的分母中含有字母是分式,其他的分母中不含有字母不是分式,故选:B.考查了分式的定义,一般地,如果A,B表示两个整式,并且B中含有字母,那么式子 叫做分式.7、D【解析】试题分析:直线l与y轴的交点(0,-3),而y=a为平行于x轴的直线,观察图象可得,当a<-3时,直线l与y=a的交点在第四象限.故选D考点:数形结合思想,一次函数与一次方程关系8、A【解析】根据矩形的性质及三角形的面积公式求得BF=12cm,在Rt△ABF中,由勾股定理可得,AF=13cm;由折叠的性质可得AD=AF,DE=EF,设DE=xcm,则EC=(5-x)cm,EF=xcm,FC =1cm.在Rt△ECF中,由勾股定理可得方程(5-x)2 +12 =x2 ,解方程求得x的值,再由三角形的面积公式即可求得△AED的面积.【详解】∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD=5cm,BC=AD,∵△AB。












