
人教版八年级数学下册正方形(提高)典型例题讲解+练习及答案.doc
9页若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载正方形(提高) 责编:康红梅【学习目标】1.理解正方形的概念,了解平行四边形、矩形及菱形与正方形的概念之间的从属关系;2.掌握正方形的性质及判定方法.【要点梳理】【 特殊的平行四边形(正方形) 知识要点】要点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.要点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.要点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.要点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.要点三、正方形的判定 正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).要点四、特殊平行四边形之间的关系或者可表示为:要点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形. (2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.【典型例题】类型一、正方形的性质 1、(2016•哈尔滨)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【思路点拨】(1)根据正方形的性质得出AD=BA,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析.【答案与解析】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90,即∠BAQ+∠DAP=90∵DP⊥AQ∴∠ADP+∠DAP=90∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ【总结升华】本题主要考查了正方形以及全等三角形,解决问题的关键是掌握:正方形的四条边相等,四个角都是直角.解题时需要运用:有两角和其中一角的对边对应相等的两个三角形全等,以及全等三角形的对应边相等.举一反三:【变式1】如图四边形ABCD是正方形,点E、K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.以线段DE、DG为边作DEFG. (1)求证:DE=DG,且DE⊥DG.(2)连接KF,猜想四边形CEFK是怎样的特殊四边形,并证明你的猜想.【答案】证明:(1)∵ 四边形ABCD是正方形, ∴ DC=DA,∠DCE=∠DAG=90. 又∵ CE=AG,∴ △DCE≌△DAG, ∴ ∠EDC=∠GDA,DE=DG.又∵ ∠ADE+∠EDC=90,∴ ∠ADE+∠GDA=90, ∴ DE⊥DG. (2)四边形CEFK为平行四边形.证明:设CK,DE相交于M点,∵ 四边形ABCD和四边形DEFG都是正方形, ∴ AB∥CD,AB=CD,EF=DG,EF∥DG; ∵ BK=AG,∴ KG=AB=CD. ∴ 四边形CKGD为平行四边形. ∴ CK=DG=EF,CK∥DG∥EF ∴ 四边形CEFK为平行四边形.【 特殊的平行四边形(正方形) 例9】【变式2】如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是_______. 【答案】2;提示:阴影部分面积等于正方形面积的一半.类型二、正方形的判定 2、(2015•闸北区模拟)如图,在Rt△ABC中,∠BAC=90,AD=CD,点E是边AC的中点,连接DE,DE的延长线与边BC相交于点F,AG∥BC,交DE于点G,连接AF、CG.(1)求证:AF=BF;(2)如果AB=AC,求证:四边形AFCG是正方形.【思路点拨】(1)根据线段垂直平分线的性质,可得AF=CF,再根据等角的余角相等可得∠B=∠BAF,所以AF=BF.(2)由AAS可证△AEG≌△CEF,所以AG=CF.由一组对边平行且相等的四边形是平行四边形得四边形AFCG是平行四边形,进而证得四边形AFCG是菱形,最后根据有一个角为直角的菱形是正方形得证四边形AFCG是正方形.【答案与解析】证明:(1)∵AD=CD,点E是边AC的中点,∴DE⊥AC.即得DE是线段AC的垂直平分线.∴AF=CF.∴∠FAC=∠ACB.在Rt△ABC中,由∠BAC=90,得∠B+∠ACB=90,∠FAC+∠BAF=90.∴∠B=∠BAF.∴AF=BF.(2)∵AG∥CF,∴∠AGE=∠CFE.又∵点E是边AC的中点,∴AE=CE.在△AEG和△CEF中,,∴△AEG≌△CEF(AAS).∴AG=CF.又∵AG∥CF,∴四边形AFCG是平行四边形.∵AF=CF,∴四边形AFCG是菱形.在Rt△ABC中,由AF=CF,AF=BF,得BF=CF.即得点F是边BC的中点.又∵AB=AC,∴AF⊥BC.即得∠AFC=90.∴四边形AFCG是正方形.【总结升华】本题考查的是正方形的判定方法,考查了线段垂直平分线的性质、全等三角形的判定与性质等基础知识的灵活运用,判别一个四边形是正方形主要是根据正方形的定义及其性质. 举一反三:【变式】(2015春•上城区期末)如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连结CF.(1)若DG=2,求证:四边形EFGH为正方形;(2)若DG=6,求△FCG的面积.【答案】(1)证明:∵四边形EFGH为菱形,∴HG=EH,∵AH=2,DG=2,∴DG=AH,在Rt△DHG和△AEH中,,∴Rt△DHG≌△AEH,∴∠DHG=∠AEH,∵∠AEH+∠AHG=90,∴∠DHG+∠AHG=90,∴∠GHE=90,∵四边形EFGH为菱形,∴四边形EFGH为正方形;(2)解:作FQ⊥CD于Q,连结GE,如图,∵四边形ABCD为矩形,∴AB∥CD,∴∠AEG=∠QGE,即∠AEH+∠HEG=∠QGF+∠FGE,∵四边形EFGH为菱形,∴HE=GF,HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠QGF,在△AEH和△QGF中,∴△AEH≌△QGF,∴AH=QF=2,∵DG=6,CD=8,∴CG=2,∴△FCG的面积=CG•FQ=22=2.类型三、正方形综合应用3、E、F分别是正方形ABCD的边AD和CD上的点,若∠EBF=45.(1)求证:AE+CF=EF.(2)若E点、F点分别是边DA、CD的延长线上的点,结论(1)仍成立吗?若成立,请证明,若不成立,写出正确结论并加以证明.【答案与解析】证明:(1)延长DC,使CH=AE,连接BH, ∵ 四边形ABCD是正方形,∴ ∠A=∠BCH=90,又AB=BC,CH=AE,∴ Rt△BAE≌Rt△BCH,∴ ∠1=∠2,BE=BH.又∵ ∠1+∠3+∠4=90,∠4=45,∴ ∠1+∠3=45,∠2+∠3=45,在△EBF和△HBF中,∴ △EBF≌△HBF,∴ EF=FH=FC+CH=AE+CF.即AE+CF=EF. (2)如图所示:不成立,正确结论:EF=CF-AE.证明:在CF上截取CH=AE,连接BH.∵ 四边形ABCD是正方形,∴ 在Rt△EAB和Rt△HCB中,∴ Rt△EAB≌Rt△HCB,∴ BE=BH,∠EBA=∠HBC.∵ ∠HBC +∠ABH=90,∴ ∠EBA +∠ABH=90.又∵ ∠EBF=45,∴ ∠HBF=45,即∠EBF=∠HBF.在△EBF和△HBF中∴ △EBF≌△HBF,∴ EF=FH=CF-CH=CF-AE,即EF=CF-AE. 【总结升华】本题主要考察正方形的性质,全等三角形的性质和判定,关键在于用“截长补短”的方法正确地作出辅助线.4、正方形ABCD的对角线交点为O,如图所示,AE平分∠BAC交BC于E,交OB于F,求证:EC=2FO.【思路点拨】在平面几何中,要证明一条线段等于另一条线段的2倍或,通常采用折半法或加倍法.而折半法又可分直接折半法和间接折半法;加倍又可分直接加倍法和间接加倍法.这就需要学生仔细研究,找到解决问题的合适方法.【答案与解析】 证法一:(间接折半法)如图①所示. ∵ ∠3=∠1+∠4,∠5=∠2+∠6. 而∠1=∠2,∠4=∠6=45. ∴ ∠3=∠5,BE=BF. 取AE的中点G,连接OG, ∵ AO=OC,∴ OGEC. 由∠7=∠5,∠8=∠3, ∴ ∠7=∠8,∴ FO=GO. ∴ EC=2OG=2FO. 证法二:(直接折半法)如图②所示. 由证法一得BE=BF. 取EC的中点H,连接OH. ∵ AO=OC,∴ OH∥AE. ∴ ∠BOH=∠BFE=∠BEF=∠BHO. ∴ BO=BH,∴ FO=EH. ∴ EC=2EH=2FO. 证法三:(直接加倍法)如图③所示. 由证法一得BE=BF.在OD上截取OM=OF,连接MC.易证Rt△AOF≌Rt△COM.∴ ∠OAF=∠OCM,∴ AE∥MC. 由∠BMC=∠BFE=∠BEF=∠BCM, ∴ FM=EC. ∴ EC=FM=2FO.【总结升华】若题目中涉及线段的倍半关系和中点问题时,要联想中位线定理,利用中点构造中位线,要注意从不同的角度进行思构,构造不同的辅助线来解决问题.举一反三:【变式】在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图①,易证EG=CG,且EG⊥CG. (1)将△BEF绕点B逆时针旋转90,如图②,则线段EG和CG有怎样的数量关系和位置关系?请直接写出。
