
2025届陕西省定边县联考九上数学开学考试模拟试题【含答案】.doc
23页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………2025届陕西省定边县联考九上数学开学考试模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图所示,在平行四边形中,对角线相交于点,,,,则平行四边形的周长为( )A. B.C. D.2、(4分)一个直角三角形斜边上的中线为5,斜边上的高为4,则此三角形的面积为( )A.25 B.16 C.20 D.103、(4分)正方形具有而菱形不一定具有的性质是( )A.对角线互相垂直 B.对角线相等 C.对角线互相平分 D.对角相等4、(4分)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程可能是( )A.x2-3x+2=0 B.x2+3x+2=0 C.x2+3x-2=0 D.x2-2x+3=05、(4分)已知四边形ABCD中,AB∥CD,对角线AC与BD交于点O,下列条件中不能用作判定该四边形是平行四边形条件的是( )A.AB=CD B.AC=BD C.AD∥BC D.OA=OC6、(4分)在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB的长为( )A.3 B.4 C.5 D.67、(4分)如图,点P是∠AOB的角平分线上一点,过点P作PC⊥OA于点C,且PC=3,则点P到OB的距离为( )A.3 B.4 C.5 D.68、(4分)如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是( )A.20 B.24 C.40 D.48二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的解析式为,则半圆圆心M的坐标为______.10、(4分)已知菱形的两条对角线长分别为1和4,则菱形的面积为______.11、(4分)若一次函数的函数值随的增大而增大,则的取值范围是_____.12、(4分)甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示。
下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是___(填序号).13、(4分)若平行四边形中两个内角的度数比为1:2,则其中一个较小的内角的度数是________°.三、解答题(本大题共5个小题,共48分)14、(12分)在所给的网格中,每个小正方形的网格边长都为1,按要求画出四边形,使它的四个顶点都在小正方形的顶点上. (1)在网格1中画出面积为20的菱形(非正方形); (2)在网格2中画出以线段为对角线、面积是24的矩形;直接写出矩形的周长 .15、(8分)计算:+--16、(8分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是_____米(平面镜的厚度忽略不计).17、(10分)一条笔直跑道上的A,B两处相距500米,甲从A处,乙从B处,两人同时相向匀速而跑,直到乙到达A处时停止,且甲的速度比乙大.甲、乙到A处的距离(米)与跑动时间(秒)的函数关系如图14所示.(1)若点M的坐标(100,0),求乙从B处跑到A处的过程中与的函数解析式;(2)若两人之间的距离不超过200米的时间持续了40秒.①当时,两人相距200米,请在图14中画出P(,0).保留画图痕迹,并写出画图步骤;②请判断起跑后分钟,两人之间的距离能否超过420米,并说明理由.18、(10分)直线是同一平面内的一组平行线.(1)如图1.正方形的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点,点分别在直线和上,求正方形的面积;(2)如图2,正方形的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为.①求证:;②设正方形的面积为,求证.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知矩形,给出三个关系式:①②③如果选择关系式__________作为条件(写出一个即可),那么可以判定矩形为正方形,理由是_______________________________ .20、(4分)如果关于x的方程有实数根,则m的取值范围是_______________.21、(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A在x轴负半轴上,顶点B在x轴正半轴上.若抛物线p=ax2-10ax+8(a>0)经过点C、D,则点B的坐标为________.22、(4分)如图,矩形纸片中,已知,,点在边上,沿折叠纸片,使点落在点处,连结,当为直角三角形时,的长为______.23、(4分)如果正比例函数的图象经过点(1,-2),那么k 的值等于 ▲ .二、解答题(本大题共3个小题,共30分)24、(8分)平面直角坐标系中,设一次函数的图象是直线.(1)如果把向下平移个单位后得到直线,求的值;(2)当直线过点和点时,且,求的取值范围;(3)若坐标平面内有点,不论取何值,点均不在直线上,求所需满足的条件.25、(10分)如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?26、(12分)已知(如图),点分别在边上,且四边形是菱形(1)请使用直尺与圆规,分别确定点的具体位置(不写作法,保留画图痕迹);(2)如果,点在边上,且满足,求四边形的面积;(3)当时,求的值。
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】由▱ABCD的对角线AC,BD相交于点O,AE=EB,易得DE是△ABC的中位线,即可求得BC的长,继而求得答案.【详解】∵▱ABCD的对角线AC,BD相交于点O,∴OA=OC,AD=BC,AB=CD=5,∵AE=EB,OE=3,∴BC=2OE=6,∴▱ABCD的周长=2×(AB+BC)=1.故选:D.此题考查了平行四边形的性质以及三角形中位线的性质.注意证得DE是△ABC的中位线是关键.2、C【解析】根据直角三角形的性质可得出斜边的长,进而根据三角形的面积公式求出此三角形的面积.【详解】解:根据直角三角形斜边上的中线等于斜边的一半知:此三角形的斜边长为5×2=10;所以此三角形的面积为:×10×4=1.故选:C.本题考查直角三角形的性质以及三角形的面积计算方法.掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.3、B【解析】根据正方形的性质以及菱形的性质逐项进行分析即可得答案.【详解】菱形的性质有①菱形的对边互相平行,且四条边都相等,②菱形的对角相等,邻角互补,③菱形的对角线分别平分且垂直,并且每条对角线平分一组对角;正方形具有而菱形不一定具有的性质是矩形的特殊性质(①矩形的四个角都是直角,②矩形的对角线相等),A.菱形和正方形的对角线都互相垂直,故本选项错误;B.菱形的对角线不一定相等,正方形的对角线一定相等,故本选项正确;C.菱形和正方形的对角线互相平分,故本选项错误;D.菱形和正方形的对角都相等,故本选项错误,故选B.本题考查了正方形与菱形的性质,解题的关键是熟记正方形与菱形的性质定理.4、A【解析】先计算出x1+x2=3,x1x2=2,然后根据根与系数的关系得到满足条件的方程可为x2-3x+2=1.【详解】解:∵x1=1,x2=2,∴x1+x2=3,x1x2=2,∴以x1,x2为根的一元二次方程可为x2-3x+2=1.故选A.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=−,x1x2=.5、B【解析】A. AB=CD,一组对边平行且相等的四边形是平行四边形;B. AC=BD,一组对边平行,另一组对边相等的四边形不一定是平行四边形,也可能是等腰梯形;C. AD∥BC,两组对边分别平行的四边形是平行四边形;D. OA=OC,通过证明两个三角形全等,得出AB=CD,可以得出平行四边形.故选B.6、C【解析】∠C=90°,AC=3,BC=4,,所以AB=5.故选C.7、A【解析】过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,从而得解.【详解】解:如图,过点P作PD⊥OB于D,∵点P是∠AOB的角平分线上一点,PC⊥OA,∴PC=PD=1,即点P到OB的距离等于1.故选:A. 本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.8、A【解析】分析:由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.详解:由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,则AB==5,故这个菱形的周长L=4AB=1.故选A.点睛:本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.二、填空题(本大题共5个小题,每小题4分,共20分)9、(1,0).【解析】当y=0时,,解得:x1=﹣1,x2=3,故A(﹣1,0),B(3,0),则AB的中点为:(1,0).故答案为(1,0).10、1【解析】利用菱形的面积等于对角线乘积的一半求解.【详解】解:菱形的面积=×1×4=1.故答案为1.本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角). 记住菱形面积=ab(a、b是两条对角线的长度).11、k>2【解析】试题分析:本题主要考查一次函数的性质,掌握一次函数的性质是解题的关键,即在y=kx+b中,当k>0时y随x的增大而增大,当k<0时y随x的增大而减小.【详解】根据题意可得:k-2>0,解得:k>2.考点:一次函数的性质;一次函数的定义12、①②③.【解析】根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【详解】由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15−9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确)。












