
溶气气浮分类及设计原理.docx
18页溶气气浮的分类及设计原理溶气气浮(DAF)是气浮的一种,它利用水在不同压力下溶解度不同的特性,对全部或部分 待处理(或处理后)的水进行加压并加气,增加水的空气溶解量,通入加过混凝剂的水中,在 常压情况下释放,空气析出形成小气泡,粘附在杂质絮粒上,造成絮粒整体密度小于水而上 升,从而使固液分离溶气气浮(DAF)适用于处理低浊度、高色度、高有机物含量、低含油量、低表面活性物质 含量或具有富藻的水相对于其它的气浮方式(详见附录1),它具有水力负荷高,池体紧 凑等优点但是它的工艺复杂,电能消耗较大,空压机的噪音大等缺点也限制着它的应用1 分类(type)根据不同的划分原则,DAF可以有不同的分类1. 1根据气泡从水中析出时所处压力的不同,可分为真空式气浮法与压力溶气气浮法两种前者利用抽真空的方法在常压或加压下溶解空气,然后在负压下释放微气泡,供气浮使用; 后者是在加压情况下,使空气强制溶于水中,然后突然减压,使溶解的气体从水中释放出来, 以微气泡形式粘附上絮粒,一起上浮1. 1. 1真空式气浮池,虽然能耗低,气泡形成和气泡与絮粒的粘附较稳定;但气泡释放 量受限制;而且,一切设备部件,都要密封在气浮池内;气浮池的构造复杂;只适用于处理 污染物浓度不高的废水(不高于300mg/l),因此实际应用不多。
1. 1. 2压力溶气气浮法是目前国内外最常采用的方法,可选择的基本流程有全流程溶气 气浮法、部分溶气气浮法和部分回流溶气气浮法三种1. 1. 2. 1全流程溶气气浮法全流程溶气气浮法是将全部废水用水泵加压,在溶气罐内,空气溶解于废水中,然后通过减 压阀将废水送入气浮池流程图见图1它的特点是:①溶气量大,增加了油粒或悬浮颗粒与气泡的接触机会;②在处理水量相同的 条件下,它较部分回流溶气气浮法所需的气浮池小③全部废水经过压力泵,所需的压力泵 和溶气罐均较其他两种流程大,因此投资和运转动力消耗较大1. 1. 2. 2部分溶气气浮法部分溶气气浮法是取部分废水加压和溶气,其余废水直接进入气浮池并在气浮池中与溶气废 水混合它的特点是:①与全流程溶气气浮法所需的压力泵小,因此动力消耗低;②气浮池的大小与 全流程溶气气浮法相同,但较部分回流溶气气浮法小1. 1. 2. 3部分回流溶气气浮法部分回流溶气气浮法是取一部分处理后的水回流,回流水加压和溶气,减压后进入气浮池, 与来自絮凝池的含油废水混合和气浮,流程见图2它的特点是:①加压的水量少,动力消耗省;②气浮过程中不促进乳化;③矶花形成好,后 絮凝也少;④气浮池的容积较前两种流程大。
现代气浮理论认为:部分回流加压溶气气浮节约能源,能充分利用浮选(混凝)剂,处理效 果优于全加压溶气气浮流程而回流比为50%时处理效果最佳,所以部分回流(回流比50%) 加压溶气气浮工艺是目前国内外最常采用的气浮法田|压力渚吒吒谭法工艺说屐It It图2部分回流溶气气浮法流程图1. 2根据气浮池中微气泡污泥层(床)有无过滤作用及水的不同流态分为:早期DAF、普通DAF和紊流DAFo(具体内容见附录3)2 设计原理(design principal)DAF 一般设置在生物处理单元之前,物理处理单元之后,习惯上将其归为物理处理单元若 设为两级浮选,为了方便节约,平面布置时常将一、二级浮选池并列,一、二级浮选池是约 有500mm左右的液位差保证污水从一级浮选池流动到二级浮选池,而取消提升泵达到节能 效果体现在竖向布置上,即在设计、施工时必须严格控制刮渣机拖架板)、可调节堰和除 渣槽顶的标高,这一点非常重要,是关键因素之一,否则会严重影响气浮效果(泡沫层无法 用机械方法撇除),这也正是必须采用可调节出水堰的原因所在\ /LJ右M牟紆出扇筍狂 I-IR J喇中0“益氓黑何世§比七寺绘弋農三诗法星理陥I1益空N営建密币力未---叹紳览图2两级浮选池工艺流程图DAF主要由空气饱和设备(也称压力溶气系统)、空气释放设备(也称溶气释放系统)和' 浮池(也称气浮分离系统)等组成。
目前,溶气气浮工艺的设计和最佳操作的确定,需要依 靠中试和经验以下,根据各种应用中总结出的经验,分别介绍各个组成部分的设计原理2. 1压力溶气系统(包括压力溶气罐、空压机、水泵及其附属设备)2. 1. 1溶气系统占整个气浮过程能量消耗的50%,溶气罐价值占工厂总基建投资的12%, 因此优化溶气系统的设计对缩小气浮操作费用是很重要的溶气罐多为园筒形,立式布置,容积按废水停留时间25〜3min计算,罐中可装设有隔板,瓷 环之类,也有用空罐的因为溶气罐内水、气相混合,所以一般按压力容器进行设计,罐顶设自动排气阀或罐底设自 动减压阀平衡压力,罐内压力一般控制在0.45MPa左右为宜,据此可以确定提升泵、回流 泵和空压机的参数在国外的设计资料和文献中,认为气水停留时间越长,溶气效率越高这样就使得溶气罐的 体积显得庞大,停留时间有时长达3〜5mi n国内的研究证实了液膜阻力控制着溶气速率, 认为停留时间越长,溶气效果越好的观念不符合实际,因此国内设计参数不同于国外,是以 预定的溶气效率为设计指标,以液相过流密度和液相总容量传质系数为参数所有研究都表明有填充床的溶气罐比没有填充床的有效,其效率最高可达到99%,但在实 际运行中,经常需对溶气罐进行内部检查,因而在很多溶气气浮工艺中常选用没有填充床的 系统,而且大部分无填充床的溶气罐常配有内部的或外部的喷射器以提高溶气效率。
2. 1. 2加压溶气法有两种进气方式,即泵前进气和泵后进气第一种是泵前进气,流程图见图3当空气吸入量小于空气在该温度下水中的饱和度时,由 水泵压水管引出一支管返回吸水管,在支管上安装水力喷射器,废水经过水力喷射器时造成 负压,将空气吸入与废水混合后,经吸水管、水泵送入溶气罐这种方式省去了空压机,气 水混合效果好,但水泵必须采用自引方式进水,而且要保持Im以上的水头,其最大吸气量 不能大于水泵吸水量的10%,否则,水泵工作不稳定,破坏了水泵应当具有的真空度,会 产生气蚀现象第二种是泵后进气,流程图见图4当空气吸入量大于空气在该温度下水中的饱和度时,空 气通过空压机在水泵的出水管压入,但也不宜大于水泵吸水量的25%这种方法使水泵工 作稳定,而且不必要求在正压下工作,但需要由空气压缩机供给空气为了保证良好的溶气 效果,溶气罐的容积也比较大,一般需采用较复杂的填充式溶气罐水泵翊空气轩空压机K」辭5J— 丸浮设哥图3泵前进气流程图 图4泵后进气流程图2. 1. 3空气注入量的调节是浮选操作的另一关键因素,一般随选择的溶气压力或回流比 而变实验也表明出水质量仅依赖于引入系统的空气总量(气泡尺寸一致时),而与单独压力 或回流比无关。
要根据污水水质、浮选(混凝)剂和减压释放器的类型经反复实践而定2. 1. 4溶气罐内水位高低是影响气浮效果的重要因素水们南宁市,缩小了水气接触部分 的窖,溶气效果不好;水位太低则缺乏必要的缓冲水深,气体会穿过水层进入气浮设备形成 大气泡,气浮效果也不佳推荐水位控制在罐内1/3〜1/4左右2. 1. 5溶气罐内的压力是影响气量的重要因素一般情况下,压力高,则溶气多,在空 压机加气方式中,溶气罐内的压力是由空压机气压和水泵共同决定的在正运转时,首先要 保证足够的水压,但水压和气压又要基本相当在采用水射器加气的方式中,保证溶气罐压力的关键是采用合适的水泵,一般水泵压力应在 保证额定流量的前提下大于0.3Mpa,溶气罐压力调整可通过调节溶气罐出水阀、水泵出水 阀、回流控制阀进行2. 1. 6根据《中华人民共和国国家标准室外排水设计规范》第8.2.7条 溶气罐的设计应 符合下列要求:、溶气罐工作压力宜采用300〜500kPa (约为3〜5kgf/cm2);二、 空气量以体积计,可按污水量5〜10%计算;三、 污水在溶气罐内停留时间应根据罐的型式确定,一般宜为1〜4min,罐内应有促进气水 充分混合的措施;四、 采用部分回流的溶气罐宜选用动态式,并应有水位控制措施。
2. 1. 7有应用中提到,增加一个精密空气稳流器,它的作用是使空气在进入溶气罐的喷头 前,确保压力平稳、均一回流比是指,当采用部分回流溶气气浮法时,进入溶气罐加压溶气的回流水量与处理水量的 比值回流比一般为废水的25%〜50%但当污水水质较差,且污水水量不大时,可适当 加大回流比,以保证出水水质2. 2溶气释放系统(主要是释放头)释放器是该系统的关键装置,它对气泡形成的大小、分布以及对气浮净水效果和运行费用均 有明显影响目前被采用的释放器的释气效率可达99.2%2. 2. 1以前的研究认为,释气泡的大小与溶气压力有关,低压时形成大气泡居多,不利 于气浮国内最新研究认为:溶气水在减压消能时气泡的释放规律与气泡在静水中的状况不 同;低压时大气泡的出现归咎于释放器不良所致除了要释放出大量稳定的微小气泡,关键 是要如何防止堵塞目前国内外采用不同类型的释放器,有简单阀门式、针型阀式以及专用释放器(专利)溶 气释放器的专利产品很多,其中效果较好的一般都有以下特点:在喷嘴处有一个瞬间的压降; 在释放器的入口处水流方向会突然改变(常为90°);释放器口径不超过2.5mm,水在释放 器中的停留时间V 1.5ms;离开释放器的水流速度逐渐变小;离开释放器的水体会与其前面一挡板发生撞击。
任何释放器都不可能只产生微气泡,而一般是产生直径在40〜70pm之间 的气泡,一些大气泡的产生是不可避免的,尽管这些大气泡的存在会降低系统的运行效率2. 2. 2根据《中华人民共和国国家标准室外排水设计规范》第8.2.8条 溶气释放器的选 用应根据含油污水水质、处理流程和释放器性能确定2. 3气浮分离系统(气浮池构件)气浮分离系统的功能是确保一定容积来完成微气泡群与水中杂质的充分混合、接触、粘附以 及带气絮粒与清水的分离2. 3. 1为了提高气浮的处理效果,往往向废水中加入混凝剂或气浮剂,投加量因水质不同 而异,一般由试验确定对于铝类絮凝剂,通过提高搅拌强度均可使出水浊度进一步降低为保证浮选(混凝)剂的混凝作用,浮选池进水端宜设静态管道混合器和反应室,反应室有效 容积约按废水(进水量与回流量的和)停留时间10分钟计算,一般分为三间,迷宫式布置, 且每间设搅拌机提高混凝效果,每间中的速度梯度常常是相同的絮凝池(也即反应室)设 计最好提供活塞流状态(紊流堆动状态),可以确保较好的气浮效果2. 3. 2溶气气浮池的最大建议尺寸可达145m2,相应的产水能力为2900〜4350m3/ h, 单位面积的产水能力至少提高了一倍。
溶气气浮池的深度从1.5m增加到5.0m,且池型由 长方形向正方形发展,长宽比在(1.2〜2): 1之间目前运行良好的溶气气浮池的长度最大 可达12m,但宽度被限制为8.5m,这主要是因为机械刮渣机的最大跨度为8.5m污水在气浮池内的停留时间一般取30〜40min,工作水深为15〜25m,长宽比不小于4,表面负荷5〜10m3/m2・h若停留时间太短,水流的冲击力大,浮选罐中的污水牌较强的紊流状态,这样不但不利于气 泡与絮体的粘附,反而会将部分已粘附在气泡上的絮体打碎;另外,由于紊流和较短的反应时间,而使投加的部分混凝剂未反应完全时就随出水流出,致使出水中悬浮固体的去除率降 低,甚至出现负增长的趋势2. 3. 3气浮池分2个区:接触区和分离区2. 3. 3. 1设计接触区时,要注意控制絮凝水的上升流速,避免短流、偏流,不致在上浮 过程中被水流剪脱已粘附的气泡而影响后续分离效果。
