好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

数字图像处理作业.doc

21页
  • 卖家[上传人]:re****.1
  • 文档编号:395359310
  • 上传时间:2022-07-09
  • 文档格式:DOC
  • 文档大小:515.50KB
  • / 21 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 数字图像处理课程论文姓名:学号:一、 直方图原理分析图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效图像增强技术主要有直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等  直方图是多种空间城处理技术的基础直方图操作能有效地用于图像增强除了提供有用的图像统计资料外,直方图固有的信息在其他图像处理应用中也是非常有用的,如图像压缩与分割直方图在软件中易于计算,也适用于商用硬件设备,因此,它们成为了实时图像处理的一个流行工具  直方图是图像的最基本的统计特征,它反映的是图像的灰度值的分布情况直方图均衡化的目的是使图像在整个灰度值动态变化范围内的分布均匀化,改善图像的亮度分布状态,增强图像的视觉效果灰度直方图是图像预处理中涉及最广泛的基本概念之一 图像的直方图事实上就是图像的亮度分布的概率密度函数,是一幅图像的所有象素集合的最基本的统计规律直方图反映了图像的明暗分布规律,可以通过图像变换进行直方图调整,获得较好的视觉效果直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。

        处理后的图像直方图分布更均匀了,图像在每个灰度级上都有像素点从处理前后的图像可以看出,许多在原始图像中看不清楚的细节在直方图均衡化处理后所得到的图像中都变得十分清晰1) 直方图均衡化原理 直方图均衡化又称直方图平坦化,是将一已知灰度概率密度分布的图像经过某种变换,变成一幅具有均匀灰度概率密度分布的新图像.其结果是扩展了像元取值的动态范围,从而达到增强图像整体对比度的效果直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候通过这种方法,亮度可以更好地在直方图上分布这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能直方图均衡化的具体实现步骤如下: (1) 1).列出原始图像的灰度级2).统计各灰度级的像素数目3).计算原始图像直方图各灰度级的频数4).计算累积分布函数5).应用以下公式计算映射后的输出图像的灰度级,P为输出图像灰度级的个数,其中INT为取整符号6).统计映射后各灰度级的像素数目7). 计算输出直方图8). 用fj和gi的映射关系修改原始图像的灰度级,从而获得直方图近似为均匀分布的输出图像(2) 直方图规定化原理直方图均衡化的优点是能自动增强整个图像的对比度,但它的具体增强效果不易控制,处理的结果总是得到全局的均衡化的直方图.实际工作中,有时需要变换直方图使之成为某个特定的形状,从而有选择地增强某个灰度值范围内的对比度,这时可采用比较灵活的直方图规定化方法。

      所谓直方图规定化,就是通过一个灰度映像函数,将原灰度直方图改造成所希望的直方图所以,直方图修正的关键就是灰度映像函数直方图规定化增强处理的步骤如下:令Pr(r)和Pz(z)分别为原始图像和期望图像的灰度概率密度函数如果对原始图像和期望图像均作直方图均衡化处理,应有由于都是进行均衡化处理,处理后的原图像概率密度函数Ps(S)及理想图像概率密度函数PV(V)是相等的于是,我们可以用变换后的原始图像灰度级S代替(2)式中的V即这时的灰度级Z 便是所希望的图像的灰度级 此外,利用(1)与(3)式还可得到组合变换函数对连续图像,重要的是给出逆变换解析式对离散图像而言,有二、 基于MATLAB的直方图增强技术编程程序:clc;clear;H=imread('001.jpg'); %读入原图像 subplot(221),imshow(H); %显示原图像title('原图像') I=rgb2gray(H); %将原图像转换为灰度图像subplot(223),imshow(I); title('灰度图像')subplot(224),imhist(I);title('灰度图像直方图')figure(2)J=histeq(I); %对灰度图像进行直方图均衡化处理 subplot(221),imshow(J); title('均衡化图像')subplot(222),imhist(J);title('均衡化图像直方图') subplot(223),imhist(I,64); %将原图像直方图显示为 64 级灰度 title('灰度64图像直方图') subplot(224),imhist(J,64); %将均衡化后图像的直方图显示为 64 级灰度 title('灰度64均衡化图像直方图') figure(3)hgram=50:2:250;K=histeq(I,hgram); subplot(221),imshow(K) ;title('规定化图像');subplot(222),imhist(K,256); title('规定化图像直方图')运行图像:三、 结果与分析从上图中可以看出,用直方图均衡化后,图像的直方图的灰度间隔被拉大了,均衡化的图像的一些细节显示了出来,这有利于图像的分析和识别。

      直方图均衡化就是通过变换函数histeq将原图的直方图调整为具有“平坦”倾向的直方图,然后用均衡直方图校正图像直方图均衡化对于背景和前景都太亮或者太暗的图像非常有用,这种方法尤其是可以带来X光图像中更好的骨骼结构显示以及曝光过度或者曝光不足照片中更好的细节这种方法的一个主要优势是它是一个相当直观的技术并且是可逆操作,如果已知均衡化函数,那么就可以恢复原始的直方图,并且计算量也不大直方图均衡化的一个缺点是它对处理的数据不加选择,它可能会增加背景杂讯的对比度并且降低有用信号的对比度;变换后图像的灰度级减少,某些细节消失;某些图像,如直方图有高峰,经处理后对比度不自然的过分增强直方图均衡化能够自动增强整个图像的对比度,但它的具体增强效果不容易控制,处理的结果总是得到全局均匀化的直方图,一般来说正确地选择规定化的函数可以获得比直方图均衡化更好的效果数字图像处理方法的研究1 绪论数字图像处理方法的研究源于两个主要应用领域:其一是为了便于人们分析而对图像信息进行改进;其二是为了使机器自动理解而对图像数据进行存储、传输及显示1.1 数字图像处理的概念一幅图像可定义为一个二维函数f(x, y),这里x和y是空间坐标,而在任何一对空间坐标f(x, y)上的幅值f称为该点图像的强度或灰度。

      当x,y和幅值f为有限的、离散的数值时,称该点是由有限的元素组成的,没一个元素都有一个特定的位置和幅值,这些元素称为图像元素、画面元素或象素象素是广泛用于表示数字图像元素的词汇在第二章,将用更正式的术语研究这些定义视觉是人类最高级的感知器官,所以,毫无疑问图像在人类感知中扮演着最重要的角色然而,人类感知只限于电磁波谱的视觉波段,成像机器则可覆盖几乎全部电磁波谱,从伽马射线到无线电波它们可以对非人类习惯的那些图像源进行加工,这些图像源包括超声波、电子显微镜及计算机产生的图像因此,数字图像处理涉及各种各样的应用领域图像处理涉及的范畴或其他相关领域(例如,图像分析和计算机视觉)的界定在初创人之间并没有一致的看法有时用处理的输人和输出内容都是图像这一特点来界定图像处理的范围我们认为这一定义仅是人为界定和限制例如,在这个定义下,甚至最普通的计算一幅图像灰度平均值的工作都不能算做是图像处理另一方面,有些领域(如计算机视觉)研究的最高目标是用计算机去模拟人类视觉,包括理解和推理并根据视觉输人采取行动等这一领域本身是人工智能的分支,其目的是模仿人类智能人工智能领域处在其发展过程中的初期阶段,它的发展比预期的要慢得多,图像分析(也称为图像理解)领域则处在图像处理和计算机视觉两个学科之间。

      从图像处理到计算机视觉这个连续的统一体内并没有明确的界线然而,在这个连续的统一体中可以考虑三种典型的计算处理(即低级、中级和高级处理)来区分其中的各个学科低级处理涉及初级操作,如降低噪声的图像预处理,对比度增强和图像尖锐化低级处理是以输人、输出都是图像为特点的处理中级处理涉及分割〔 把图像分为不同区域或目标物)以及缩减对目标物的描述,以使其更适合计算机处理及对不同日标的分类(识别)中级图像处理是以输人为图像,但输出是从这些图像中提取的特征(如边缘、轮廓及不同物体的标识等)为特点的最后,高级处理涉及在图像分析中被识别物体的总体理解,以及执行与视觉相关的识别函数(处在连续统一体边缘)等根据上述讨论,我们看到,图像处理和图像分析两个领域合乎逻辑的重叠区域是图像中特定区域或物体的识别这一领域这样,在本书中,我们界定数字图像处理包括输人和输出均是图像的处理,同时也包括从图像中提取特征及识别特定物体的处理举一个简单的文本自动分析方面的例子来具体说明这一概念在自动分析文本时首先获取一幅包含文本的图像,对该图像进行预处理,提取(分割)字符,然后以适合计算机处理的形式描述这些字符,最后识别这些字符,而所有这些操作都在本书界定的数字图像处理的范围内。

      理解一页的内容可能要根据理解的复杂度从图像分析或计算机视觉领域考虑问题这样,本书定义的数字图像处理的概念将在有特殊社会和经济价值的领域内通用在以下各章展开的概念是那些应用领域所用方法的基础1.2数字图像处理的起源数字图像处理最早的应用之一是在报纸业,当时,图像第一次通过海底电缆从伦敦传往纽约早在20世纪20年代曾引入Btutlane电缆图片传输系统,把横跨大西洋传送一幅图片所需的时间从一个多星期减少到3个小时为了用电缆传输图片,首先要进行编码,然后在接收端用特殊的打印设备重构该图片图1.1就是用这种方法传送并利用电报打印机通过字符模拟中间色调还原出来的图像这些早期数字图像视觉质量的改进工作,涉及到打印过程的选择和亮度等级的分布等问题用于得到图1.1的打印方法到1921年底就被彻底淘汰了,转而支持一种基于光学还原的技术,该技术在电报接收端用穿孔纸带打出图片图1.2就是用这种方法得到的图像,对比图1.1,它在色调质量和分辨率方面的改进都很明显 图1.1 1421年由电报打印机采用特殊字 图1.2 1922年在信号两次穿越大西洋后, 符在编码纸带中产生的数字图像 从穿孔纸带得到的数字图像,可以 ( McFalsne) 看出某些差错 ( McFalsne) 早期的Bartlane系统可以用5个灰度等级对图像编码,到1929年已增加到15个等级。

      图1.3所示的这种典型类型的图像就是用15级色调设备得到的在这一时期,由于引入了一种用编码图像纸带去调制光束而使底片感光的系统,明显地改善了复原过程刚才引用的数字图像的例子并没有考虑数字图像处理的结果,这。

      点击阅读更多内容
      相关文档
      2025-2026学年八年级英语上学期期中复习之单元语法综合练100题(Unit 1-Unit 4).docx 2025-2026学年八年级英语上学期开学考试英语试卷(广东卷).docx 2025-2026学年八年级英语上学期Unit 1 单元测试卷.docx 2025-2026学年八年级英语上学期开学考试英语试卷(浙江卷).docx 2025-2026学年八年级英语上学期开学考试英语试卷(湖南长沙卷).docx 2025-2026学年八年级英语上学期开学考试英语试卷(重庆卷).docx 2025-2026学年八年级英语上学期开学考试英语试卷(安徽卷).docx 2025-2026学年八年级英语上学期开学考试英语试卷(湖北卷).docx 2025-2026学年八年级英语上学期开学考试英语试卷(成都卷).docx 2025-2026学年八年级英语上学期开学考试英语试卷(湖南卷).docx 四川省成都市2025年中考数学真题试卷附同步解析.docx 四川省成都市锦江区师一学校2024_2025学年下学期八年级数学期中考试卷.docx 四川省成都市2025年中考数学真题试卷含同步解析.pptx 2025年四川省南充市名校联测中考一模数学试卷[含答案].docx 2025年四川省绵阳市游仙区中考一模数学试卷[含答案].docx 2024—2025学年山西省晋中市左权县八年级下学期6月期末数学试题[含答案].docx 2024—2025学年江西省吉安市青原区八年级下学期6月期末数学试题[含答案].docx 2025年四川省绵阳市涪城区中考一模数学试卷[含答案].docx 2025年四川省绵阳市安州区中考模数学试卷[含答案].docx 2024—2025学年江西省赣州市于都县八年级下学期6月期末数学试题[含答案].docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.