
状态转移矩阵计算课堂PPT.ppt
42页Ch.3 Ch.3 线性系统的时域分析线性系统的时域分析1.目录目录(1/1)目目 录录q概述概述q3.1 线性定常连续系统状态方程的解线性定常连续系统状态方程的解q3.2 状态转移矩阵及其计算状态转移矩阵及其计算 q3.3 线性时变连续系统状态方程的解线性时变连续系统状态方程的解q3.4 线性定常连续系统的离散化线性定常连续系统的离散化q3.5 线性定常离散系统状态方程的解线性定常离散系统状态方程的解q3.6 Matlab问题问题q本章小结本章小结2.状态转移矩阵计算状态转移矩阵计算(1/1)3.2 状态转移矩阵计算状态转移矩阵计算 q在状态方程求解中,关键是状态转移矩阵(t)的计算Ø对于线性定常连续系统,该问题又归结为矩阵指数函数eAt的计算Ø上一节已经介绍了基于拉氏反变换拉氏反变换技术的矩阵指数函数eAt的计算方法,下面讲述计算矩阵指数函数的下述其他3种常用方法ü级数求和法级数求和法ü约旦规范形法约旦规范形法 ü化化eAt为为A的有限多项式矩阵函数法的有限多项式矩阵函数法重点推荐3.级数求和法级数求和法(1/3)3.2.1 级数求和法级数求和法 q由上一节对矩阵指数函数的定义过程中可知:Ø矩阵指数函数eAt的计算可由上述定义式直接计算。
q由于上述定义式是一个无穷级数,故在用此方法计算eAt时必须考虑级数收敛性条件和计算收敛速度问题Ø 类似于标量指数函数eat,对所有有限的常数矩阵A和有限的时间t来说,矩阵指数函数eAt这个无穷级数表示收敛4.级数求和法级数求和法(2/3)q显然,用此方法计算eAt一般不能写成封闭的、简洁的解析形式,只能得到数值计算的近似计算结果Ø其计算精度取决于矩阵级数的收敛性与计算时所取的项数的多少Ø如果级数收敛较慢,则需计算的级数项数多,人工计算是非常麻烦的,一般只适用于计算机计算Ø因此,该方法的缺点:ü计算量大ü精度低ü非解析方法,难以得到计算结果的简洁的解析表达式 5.级数求和法级数求和法(3/3)—例例3-4q例例3-4 用直接计算法求下述矩阵的矩阵指数函数:q解 按矩阵指数函数的展开式计算如下:6.约旦规范形法约旦规范形法 (1/8)3.2.2 约旦规范形法约旦规范形法 q上节给出了对角线矩阵、块对角矩阵和约旦块三种特殊形式矩阵的矩阵指数函数Ø由于任何矩阵都可经线性变换成为对角线矩阵或约旦矩阵,因此ü可通过线性变换将一般形式的矩阵变换成对角线矩阵或约旦矩阵,ü再利用上述特殊形式矩阵的矩阵指数函数来快速计算矩阵矩阵指数函数。
Ø下面讨论之7.约旦规范形法约旦规范形法(2/8)q下面首先讨论矩阵指数函数的一条性质:Ø对矩阵A,经变换矩阵P作线性变换后,有则相应地有如下矩阵指数函数的变换关系8.约旦规范形法约旦规范形法(3/8)q根据上述性质,对矩阵A,可通过线性变换方法得到对角线矩阵或约旦矩阵,然后利用该类特殊矩阵的矩阵指数函数,由矩阵指数函数的变换关系来求原矩阵A的矩阵指数函数q该结论可简单证明如下:9.约旦规范形法约旦规范形法(4/8)—例例3-5q例3-5 试求如下系统矩阵的矩阵指数函数q解解 1. 先求先求A的特征值的特征值由特征方程可求得特征值为1=-1 2=-2 3=-32. 求特征值所对应的特征向量求特征值所对应的特征向量由前述的方法可求得特征值1,2和3所对应的特征向量分别为p1=[1 0 1] p2=[1 2 4] p3=[1 6 9]10.约旦规范形法约旦规范形法—例例3-5q故将A变换成对角线矩阵的变换矩阵P及其逆阵P-1为3. 由系统矩阵和矩阵指数函数的变换关系,分别有11.约旦规范形法约旦规范形法—例例3-6q例3-6 试求如下系统矩阵的矩阵指数函数12.约旦规范形法约旦规范形法(7/8)—例例3-6q解解 1. 先求先求A的特征值。
的特征值由特征方程可求得特征值为1=2 2=3=-12. 由于矩阵A为友矩阵,故将A变换成约旦矩阵的变换矩阵P和其逆阵P-1分别为3. 由系统矩阵和矩阵指数函数的变换关系,分别有13.约旦规范形法约旦规范形法(8/8)--例例3-614.塞尔维斯特内插法塞尔维斯特内插法(1/1)3.2.3 塞尔维斯特内插法塞尔维斯特内插法q在讨论塞尔维斯特(Sylvester)内插法计算矩阵指数函数eAt时,需要用到关于矩阵特征多项式的凯莱-哈密顿(Cayley-Hamilton)定理以及最小多项式的概念Ø因此,首先给出凯莱-哈密顿定理及最小多项式的概念,再讨论塞尔维斯特内插法Ø下面依次介绍:ü凯莱凯莱-哈密顿定理哈密顿定理ü最小多项式最小多项式ü塞尔维斯特内插法计算矩阵指数函数塞尔维斯特内插法计算矩阵指数函数15.凯莱-哈密顿定理(1/4)1. 凯莱-哈密顿定理q凯莱-哈密顿定理是矩阵方程分析和求解中非常重要的定理,其表述和证明如下q定理3-1(凯莱-哈密顿定理) 设nn矩阵A的特征多项式为f()=|I-A|=n+a1n-1+…+an-1+an则矩阵A必使由上述特征多项式决定的矩阵多项式函数f(A)=An+a1An-1+…+an-1A+anI=0上述特征多项式亦称为矩阵A的零化特征多项式。
□16.凯莱-哈密顿定理(2/4)q证明 因为I=(I-A)-1(I-A)=[adj(I-A)/|I-A|](I-A)故|I-A|I=adj(I-A)(I-A)Ø由伴随矩阵的定义可知,伴随矩阵adj(I-A)可表示为如下多项式矩阵函数:adj(I-A)=n-1I+n-2B2+…+Bn-1+Bn其中矩阵B2,B3,…,Bn为nn维的常数矩阵17.凯莱-哈密顿定理(3/4)Ø因此由前面两式,有(n+a1n-1+…+an-1+an)I=(n-1I+n-2B2+…+Bn-1+Bn)(I-A)Ø整理得 (n+a1n-1+…+an-1+an)I =nI+(B2-A)n-1+…+(Bn-Bn-1A)-BnA18.凯莱-哈密顿定理(4/4)Ø上式中,令等号两边的同幂次项的系数相等,则有a1I-B2+A=0a2I-B3+AB2=0 …an-1I-Bn+ABn-1=0anI+ABn=0Ø因此,将上述各等式从上至下依次右乘以An-1,…,A,I,然后将各等式相加,即得An+a1An-1+…+an-1A+anI=0Ø故矩阵A满足其本身的零化特征多项式。
19.最小多项式最小多项式 (1/3)2. 最小多项式最小多项式 q根据凯莱-哈密尔顿定理,任一n×n维矩阵A满足其自身的特征方程,即特征多项式为A的一个零化多项式Ø然而特征多项式不一定是A的最小阶次的零化多项式Ø将矩阵A满足的最小阶次的首一零化多项式称为最小多项式,也就是说,定义n×n维矩阵A的最小多项式为满足(A)=Am+1Am-1+…+m-1A+mI=0, mn的阶次最低的首一多项式()=m+1m-1+…+m-1+m20.最小多项式最小多项式(2/3)q最小多项式在矩阵多项式的分析与计算中起着重要作用Ø定理3-2给出了特征多项式与最小多项式的关系q定理定理3-2 设首一多项式d()是I-A的伴随矩阵adj(I-A)的所有元素的最高公约式,则最小多项式为21.最小多项式最小多项式(3/3)q证明证明 由假设知,矩阵adj(I-A)的最高公约式为d(),故adj(I-A)=d()B(),式中,B()的n2个元素(为的函数)的最高公约式为1Ø由于(I-A)adj(I-A)=|I-A|I可得d()(I-A)B()=|I-A|IØ由上式可知,特征多项式|I-A|可被整除d()。
ü因此设d()整除|I-A|得到的因式记为(),故有|I-A|=d()(),22.最小多项式最小多项式(4/3)q由于首一多项式d()的最高阶次的系数为1,所以()的最高阶次的系数也应为1Ø因此,综合上两式,可得(I-A)B()=()I因而(A)=0即()亦为A的零化多项式Ø设()为A的最小多项式,因此零化多项式()可写为()=g()()+e()其中g()和e()分别是多项式()除以()的商和余项,且e()的阶次低于()23.最小多项式最小多项式(5/3)Ø由于(A)=0和(A)=0,所以必然有e(A)=0ü考虑到()为矩阵A的最小多项式,所以不存在比()阶次还低的A的零化多项式,故e()必为零,即有()=g()()q又因为(A)=0,所以()可写为()I=(I-A)H()式中,H()为()的一个因子矩阵,故()I=g()()I=g()(I-A)H()Ø将上式与(I-A)B()=()I比较,有B()=g()H()24.最小多项式最小多项式(6/3)q又因为B()的n2个元素的最高公约式为1,因此g()=1于是()=()因此,由前面证明的|I-A|=d()()而证明了最小多项式()为25.最小多项式最小多项式(7/3)q根据上述定理3-2,n×n维矩阵A的最小多项式可按以下步骤求出。
1) 根据伴随矩阵adj(I-A),写出作为的因式分解多项式的adj(I-A)的各元素;2) 确定作为伴随矩阵adj(I-A)各元素的最高公约式d()ü选取d()的最高阶次系数为1ü如果不存在公约式,则d()=1;3) 最小多项式()可由|I-A|除以d()得到26.塞尔维斯特内插法计算矩阵指数函数塞尔维斯特内插法计算矩阵指数函数(1/4)3. 塞尔维斯特内插法计算矩阵指数函数塞尔维斯特内插法计算矩阵指数函数q基于最小多项式(或特征多项式),塞尔维斯特内插法可以非常简洁、快速地计算出矩阵指数函数,其计算思想与过程可描述如下q若()=m+1m-1+…+m-1+m为矩阵A的最小多项式,则由(A)=0有 Am=-1Am-1-…-m-1A-mI即Am可用有限项Am-1,…,A,I的线性组合来表示27.塞尔维斯特内插法计算矩阵指数函数塞尔维斯特内插法计算矩阵指数函数(2/4)q将上式两边乘以矩阵A,则有即Am+1可用有限项Am-1,…,A,I的线性组合来表示28.塞尔维斯特内插法计算矩阵指数函数塞尔维斯特内插法计算矩阵指数函数(3/4)q依次类推,则可知,Ai(i>m)可用有限项Am-1,…,A,I的线性组合来表示。
Ø因此,我们有其中i(t)(i=0,1,…,m-1)为待定的关于时间t的函数Ø即,矩阵指数函数eAt亦可以用有限项Am-1,…,A,I的线性函数组合表示29.塞尔维斯特内插法计算矩阵指数函数塞尔维斯特内插法计算矩阵指数函数(4/4)q利用上式去计算矩阵指数函数eAt的关键关键是如何计算待定函数i(t)Ø下面分üA的特征值互异的特征值互异üA有重特征值有重特征值两种情况来讨论如何计算i(t)以及eAt30.A的特征值互异的特征值互异(1/4)(1) A的特征值互异的特征值互异q设矩阵A的n个互异特征值为1,2,…,n,则矩阵A的最小多项式()等于特征多项式f()=|I-A|=n+a1n-1+…+an-1+anØ因系统的所有特征值i使特征多项式f(i)=0,故与前面证明过程类似,我们亦有其中待定函数i(t)(i=0,1,…,n-1)与矩阵指数函数eAt的表达式中的i(t)一致31.A的特征值互异的特征值互异(2/4)Ø因此,可得如下待定函数i(t)(i=0,1,…,n-1)的线性方程组:Ø求解上述方程得函数i(t)后,由式(3-49)可计算得矩阵指数函数eAt。
32.A的特征值互异的特征值互异(3/4)--例3-7 q例3-7 试求如下系统矩阵的矩阵指数函数q解 由于矩阵A的3个特征值互异,并分别为-1,-2和-3,因此解方程组(3-52)可得33.A的特征值互异的特征值互异(4/4)则系统的状态转移矩阵为34.A有重特征值有重特征值(1/4)(2) A有重特征值有重特征值q由于矩阵A与它的约旦矩阵 具有相同的最小多项式(),因此由前面的推导过程可知,约旦矩阵 也满足Ø设A与 的特征值i的代数重数为mi,则由上式很容易证明i(t)满足Ø求解上述方程,则可求得待定函数i(t)35.A有重特征值有重特征值(2/4)q为清楚说明问题,设A和 有如下6个特征值:1,1,1,2,2,3Ø则相应的矩阵指数函数计算式(3-49)中的待定函数i(t)(i=0, 1,…,5)的计算式为36.A有重特征值有重特征值(3/4)—例例3-8q值得指出的是,上述塞尔维斯特内插法不仅对矩阵A的最小多项式成立,而且对所有矩阵A的零化多项式也成立Ø因此,在难以求解最小多项式时,上述方法中的最小多项式可用矩阵A的特征多项式代替,所得结果一致,仅计算量稍大。
q例3-8 试求如下系统矩阵的矩阵指数函数37.A有重特征值有重特征值(4/4)—例例3-8q解 解矩阵A的特征方程,得特征值为1,1和2Ø由于特征值2为二重特征值,下面按基于ü最小多项式和ü特征多项式两种多项式用塞尔维斯特插值法计算矩阵指数函数38.A有重特征值有重特征值(5/4)—例例3-8(1) 基于最小多项式计算Ø先计算伴随矩阵因此,伴随矩阵adj(I-A)各元素的最高公约式为(-2),故最小多项式()为39.A有重特征值有重特征值(6/4)—例例3-8Ø由于最小多项式的阶次为2,则根据塞尔维斯特插值法,矩阵指数函数可以表示为因此,待定函数i(t)(i=0, 1)计算如下则系统的矩阵指数函数为40.A有重特征值有重特征值(7/4)—例例3-8(2) 基于特征多项式计算Ø由于特征多项式的阶次为3,则根据塞尔维斯特插值法,矩阵指数函数可以表示为 因此,待定函数i(t)(i=0, 1,2)计算如下41.A有重特征值有重特征值(8/4)—例例3-8则系统的矩阵指数函数为42.。
