
2024-2025学年山东省邹城市邹城中学数学九上开学复习检测模拟试题【含答案】.doc
22页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………2024-2025学年山东省邹城市邹城中学数学九上开学复习检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)函数y=x-1的图象是( )A. B.C. D.2、(4分)要使二次根式有意义,则x的取值范围在数轴上表示正确的是( )A. B.C. D.3、(4分)为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了15户居民的日用电量,结果如下表:日用电量(单位:度)45678户数25431则关于这15户家庭的日用电量,下列说法错误的是( )A.众数是5度 B.平均数6度C.极差(最大值-最小值)是4度 D.中位数是6度4、(4分)如图,一次函数()的图象经过,两点,则关于的不等式的解集是( )A. B. C. D.5、(4分)已知甲,乙两组数据的折线图如图所示,设甲,乙两组数据的方差分别为S2甲,S2乙,则S2甲与S2乙大小关系为( )A.S2甲>S2乙 B.S2甲=S2乙 C.S2甲<S2乙 D.不能确定6、(4分)如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是( )A.4 B.6 C.8 D.107、(4分)在,,,,,中分式的个数有( )A.2个 B.3个 C.4个 D.5个8、(4分)如图,中,,平分,点为的中点,连接,若的周长为24,则的长为( )A.18 B.14 C.12 D.6二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)将函数的图象向上平移2个单位,所得的函数图象的解析为________.10、(4分)抛物线,当随的增大而减小时的取值范围为______.11、(4分)某垃圾处理厂日处理垃圾吨,实施垃圾分类后,每小时垃圾的处理量比原来提高,这样日处理同样多的垃圾就少用.若设实施垃圾分类前每小时垃圾的处理量为吨,则可列方程____________.12、(4分)如图,在中,角是边上的一点,作垂直, 垂直,垂足分别为,则的最小值是______.13、(4分)如图,是同一双曲线上的三点过这三点分别作轴的垂线,垂足分别为,连结得到的面积分别为.那么的大小关系为____.三、解答题(本大题共5个小题,共48分)14、(12分)已知直线l1:y=x+n﹣2与直线l2:y=mx+n相交于点P(1,2).(1)求m,n的值;(2)请结合图象直接写出不等式mx+n>x+n﹣2的解集.(3)若直线l1与y轴交于点A,直线l2与x轴交于点B,求四边形PAOB的面积.15、(8分)计算:(1)(2)16、(8分)某公司第一季度花费3000万元向海外购进A型芯片若干条,后来,受国际关系影响,第二季度A型芯片的单价涨了10元/条,该公司在第二季度花费同样的钱数购买A型芯片的数量是第一季度的80%,求在第二季度购买时A型芯片的单价。
17、(10分)如图,直线y1=x+1交x、y轴于点A、B,直线y2=﹣2x+4交x、y轴与C、D,两直线交于点E.(1)求点E的坐标;(2)求△ACE的面积.18、(10分)已知:如图,在中,的平分线交于点,的平分线交于点,交于点.求证:.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,直线y1=x+1和直线y1=0.5x+1.5相交于点(1,3),则当x=_____时,y1=y1;当x______时,y1>y1.20、(4分)在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的是______(填写所有正确结论的序号).21、(4分)平面直角坐标系中,将直线l:y=2x-1沿y轴向下平移b个单位长度后后得到直线l′,点A(m,n)是直线l′上一点,且2m-n=3,则b =_______.22、(4分)一列数,,,,其中,(为不小于的整数),则___.23、(4分)如图菱形 ABCD 的对角线 AC,BD 的长分别为 12 cm,16 cm,则这个菱形的周长为____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,已知是线段的中点,,且,试说明的理由.25、(10分)如图①,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图②为列车离乙地路程y(千米)与行驶时间x(小时)的函数关系图象.(1)填空:甲、丙两地距离_______千米;(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.26、(12分)如图1,在矩形纸片ABCD中,AB=8,BC=16,将矩形纸片沿EF折叠,使点C与点A重合.(1)判断△AEF的形状,并说明理由;(2)求折痕EF的长度;(3)如图2,展开纸片,连接CF,则点E到CF的距离是 .参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】∵一次函数解析式为y=x-1,∴令x=0,y=-1.令y=0,x=1,即该直线经过点(0,-1)和(1,0).故选D.考点:一次函数的图象.2、B【解析】直接利用二次根式有意义的条件得出x的取值范围进而得出答案.【详解】解:要使二次根式有意义,则x≥0,则x的取值范围在数轴上表示为:.故选:B.本题主要考查了二次根式有意义的条件,正确理解二次根式的定义是解题的关键.3、B【解析】根据众数的定义,在一组数据中出现次数最多就是众数,以及根据加权平均数的求法,可以得出平均数,极差是最大值与最小值的差,中位数是按大小排列后最中间一个或两个的平均数,求出即可.【详解】解:∵由图表得:15户家庭日用电量分别为:4,4,5,5,5,5,5,6,6,6,6, 7,7,7, 8 ∴此组数据的众数是:5度,故本选项A正确;此组数据的平均数是:(4×2+5×5+6×4+7×3+8)÷15≈5.73度,故本选项B错误;极差是:8-4=4度,故本选项C正确;中位数是:6度,故本选项D正确.故选:B.本题主要考查了众数,中位数,极差以及加权平均数的求法,正确的区分它们的定义是解决问题的关键.4、C【解析】根据图像,找到y>0时,x的取值范围即可.【详解】解:由图像可知:该一次函数y随x的增大而增大,当x=-3时,y=0∴当x>-3时,y>0,即∴关于的不等式的解集是故选C.此题考查的是一次函数与一元一次不等式的关系,掌握一次函数的图象及性质与一元一次不等式的解集的关系是解决此题的关键.5、A【解析】通过折线统计图中得出甲、乙两个组的各个数据,进而求出甲、乙的平均数,甲、乙的方差,进而做比较得出答案.【详解】甲的平均数:(3+6+2+6+4+3)÷6=4,乙的平均数:(4+3+5+3+4+5)÷6=4,=[(3﹣4)2+(6﹣4)2+(2﹣4)2+(6﹣4)2+(4﹣4)2+(3﹣4)2]≈2.33,=[(4﹣4)2+(3﹣4)2+(5﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2]≈1.33,∵2.33>1.33∴>,故选:A.本题主要考查方差的意义,掌握方差的计算公式,是解题的关键.6、B【解析】平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.【详解】解:平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小.∵OD⊥BC,BC⊥AB,∴OD∥AB,又∵OC=OA,∴OD是△ABC的中位线,∴OD=AB=3,∴DE=2OD=1.故选:B.此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半,正确理解DE最小的条件是关键.7、B【解析】根据分式的定义进行判断;【详解】,,,,中分式有:,,共计3个.故选:B.考查了分式的定义,解题关键抓住分式中分母含有字母.8、A【解析】根据题意可知,本题考查了等腰三角形三线合一,直角三角形斜边上的中线的性质,根据等腰三角形三线合一找准底边中线与直角三角形斜边上的中线等于斜边的一半,进行分析推断.【详解】解: ,平分垂直平分(等腰三角形三线合一) ,又在直角三角形中,点是边中点,即的周长24即的周长918故应选A本题解题关键:理解题干的条件,运用有关性质定理,特别注意的是利用等量代换的思维表示的周长.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,将函数y=3x的图象向上平移2个单位所得函数的解析式为.故答案为:.本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.10、(也可以)【解析】先确定抛物线的开口方向和对称轴,即可确定答案.【详解】解:∵的对称轴为x=1且开口向上∴随的增大而减小时的取值范围为(也可以)本题主要考查了二次函数增减性中的自变量的取值范围,其中确定抛物线的开口方向和对称轴是解答本题的关键.11、【解析】设实施垃圾分类前每小时垃圾的处理量为吨,则后来每小时清除垃圾吨,根据“原工作时间−3=后来的工作时间”列分式方程求解可得.【详解】解:设实施垃圾分类前每小时垃圾的处理量为吨,则后来每小时清除垃圾,根据题意得.故答案为.本题主要考查分式方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程求解.12、【解析】根据已知条件得出四边形AEPF为矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.【详解】连接AP,四边形AFPE是矩形,要使EF最小,只要AP最小即可,过点A作于P,此时AP最小,在直角三角形中,由勾股定理得:BC=5,由三角形面积公式得:,即,故答案为:.本题是矩形的判定与性质和直角三角形结合考查的题型,找出与EF相等的线段,结合垂线段最短的性质是解题的关键.13、S1=S2=S1【解析】根据反比例函数k的几何意义进行判断.【详解】解:设P1、P2、P1三点都在反比例函数y=上,则S1=|k|,S2=|k|,S1=|k|,所以S1=S2=S1.故答案为S1=。












